Research Article
BibTex RIS Cite
Year 2018, Volume: 47 Issue: 6, 1537 - 1551, 12.12.2018

Abstract

References

  • Agarwal, R., Bohner, M., O'Regan, D., Osman, M., Saker, S., A general dynamic inequality of Opial type, Appl. Math. Infor. Sci. 10, 1--5, 2016.
  • Agarwal, R. P., O'Regan, D., Saker, S. H., Dynamic Inequalities on Time Scales, Springer, 2014.
  • Bohner, M., Clark, S., Ridenhour, J., Lyapunov inequalities for time scales, J. Ineq. Appl. 7, 61--77, 2002.
  • Bohner, M., Kaymakçalan, B., Opial Inequalities on time scales, Ann. Polon. Math. 77 (1), 11--20, 2001.
  • Bohner, M., Peterson, A., Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser, Boston, 2001.
  • Bohner, M., Peterson, A., Advances in Dynamic Equations on Time Scales, Birkhauser, Boston, 2003.
  • Brown, R. C., Hinton, B. D., Opial's inequality and oscillation of 2$^{nd}$ order equations, Proc. Amer. Math. Soc. 125 (4), 1123--1129, 1997.
  • Cohn, J. H. E., Consecutive zeros of solutions of ordinary second order differential equations, J. London Math. Soc. 2 (5), 465--468, 1972.
  • Dosly, O., Rehak, P., Half-Linear Differential Equations, Elsevier Ltd, Heidelberg, 2005.
  • Harris, B. J., Kong, Q., On the oscillation of differential equations with an oscillatory coefficient, Trans. Amer. Math. Soc. 347 (5), 1831-1839, 1995.
  • Hartman, P., Ordinary Differential Equations, Wiley, New York, 1964 and Birkhuser, Boston, 1982.
  • Hartman, P., Wintner, A., On an oscillation criterion of de la Vallée Poussin, The Quarterly J. Math. 13, 330--332, 1955.
  • Hilger, S., Analysis on measure chain--a unified approach to continuous and discrete calculus, Results Math. 18, 18--56, 1990.
  • Karpuz, B., Kaymakçalan, B., Öcalan, Ö., A generalization of Opial's inequality and applications to second order dynamic equations, Diff. Eqns. Dyn. Syst. 18 (1--2), 11--18, 2010.
  • Kwong, M. K., On Lyapunov's inequality for disfocality, J. Math. Anal. Appl. 83, 486-494, 1981.
  • Lee, C. F., Yeh, C. C., Hong, C. H., Agarwal, R. P., Lyapunov and Wirtinger inequalities, Appl. Math. Lett. 17, 847--853, 2004.
  • Olech, Z., Asimple proof of a certain result of Z. Opial, Ann. Polon. Math. 8, 61--63, 1960.
  • Opial, Z., Sur uné inegalité, Ann. Polon. Math. 8, 29--32, 1960.
  • Saker, S. H., Oscillation Theory of Dynamic Equations on Time Scales: Second and Third Orders, Lambert Academic Publishing, Germany, 2010.
  • Saker, S. H., Lyapunov inequalities for half-linear dynamic equations on time scales and disconjugacy, Dyn. Cont. Discr. Impuls. Syst. Ser. B Appl. Algorithms 18, 149--161, 2011.
  • Saker, S. H., Lyapunov type inequalities for a second order differential equation with a damping term, Ann. Polon. Math. 103 (1), 37--57, 2012.
  • Saker, S. H., Opial's type inequalities on time scales and some applications, Ann. Polon. Math. 104, 243--260, 2012.
  • Saker, S. H., Applications of Opial inequalities on time scales on dynamic equations with damping terms, Math. Comp. Model.58, 1777--1790, 2013.
  • Saker, S. H., Osman, M. M., O'Regan, D., Agarwal, R. P., Some new Opial dynamic inequalities with weighted functions on time scales, Math. Ineq. Appl. 18 (3), 1171--1187, 2015.
  • Tiryaki, A., Recent development of Lyapunov-type inequalities, Advances in Dyn. Syst. Appl. 5 (2), 231--248, 2010.
  • Wintner, A., On the nonexistence of conjugate points, Amer. J. Math. 73, 368--380, 1951.
  • Yang, X., On inequalities of Lyapunov type, Appl. Math. Comp. 134, 293--300, 2003.

Lyapunov inequalities for dynamic equations via new Opial type inequalities

Year 2018, Volume: 47 Issue: 6, 1537 - 1551, 12.12.2018

Abstract

In this paper, we prove some new dynamic inequalities of Opial type on time scales. By employing these new inequalities we establish some new Lyapunov type inequalities for a second order dynamic equation with a damping term. These new Lyapunov inequalities give lower bounds on the distance between zeros of a solution and/or its derivative.

References

  • Agarwal, R., Bohner, M., O'Regan, D., Osman, M., Saker, S., A general dynamic inequality of Opial type, Appl. Math. Infor. Sci. 10, 1--5, 2016.
  • Agarwal, R. P., O'Regan, D., Saker, S. H., Dynamic Inequalities on Time Scales, Springer, 2014.
  • Bohner, M., Clark, S., Ridenhour, J., Lyapunov inequalities for time scales, J. Ineq. Appl. 7, 61--77, 2002.
  • Bohner, M., Kaymakçalan, B., Opial Inequalities on time scales, Ann. Polon. Math. 77 (1), 11--20, 2001.
  • Bohner, M., Peterson, A., Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser, Boston, 2001.
  • Bohner, M., Peterson, A., Advances in Dynamic Equations on Time Scales, Birkhauser, Boston, 2003.
  • Brown, R. C., Hinton, B. D., Opial's inequality and oscillation of 2$^{nd}$ order equations, Proc. Amer. Math. Soc. 125 (4), 1123--1129, 1997.
  • Cohn, J. H. E., Consecutive zeros of solutions of ordinary second order differential equations, J. London Math. Soc. 2 (5), 465--468, 1972.
  • Dosly, O., Rehak, P., Half-Linear Differential Equations, Elsevier Ltd, Heidelberg, 2005.
  • Harris, B. J., Kong, Q., On the oscillation of differential equations with an oscillatory coefficient, Trans. Amer. Math. Soc. 347 (5), 1831-1839, 1995.
  • Hartman, P., Ordinary Differential Equations, Wiley, New York, 1964 and Birkhuser, Boston, 1982.
  • Hartman, P., Wintner, A., On an oscillation criterion of de la Vallée Poussin, The Quarterly J. Math. 13, 330--332, 1955.
  • Hilger, S., Analysis on measure chain--a unified approach to continuous and discrete calculus, Results Math. 18, 18--56, 1990.
  • Karpuz, B., Kaymakçalan, B., Öcalan, Ö., A generalization of Opial's inequality and applications to second order dynamic equations, Diff. Eqns. Dyn. Syst. 18 (1--2), 11--18, 2010.
  • Kwong, M. K., On Lyapunov's inequality for disfocality, J. Math. Anal. Appl. 83, 486-494, 1981.
  • Lee, C. F., Yeh, C. C., Hong, C. H., Agarwal, R. P., Lyapunov and Wirtinger inequalities, Appl. Math. Lett. 17, 847--853, 2004.
  • Olech, Z., Asimple proof of a certain result of Z. Opial, Ann. Polon. Math. 8, 61--63, 1960.
  • Opial, Z., Sur uné inegalité, Ann. Polon. Math. 8, 29--32, 1960.
  • Saker, S. H., Oscillation Theory of Dynamic Equations on Time Scales: Second and Third Orders, Lambert Academic Publishing, Germany, 2010.
  • Saker, S. H., Lyapunov inequalities for half-linear dynamic equations on time scales and disconjugacy, Dyn. Cont. Discr. Impuls. Syst. Ser. B Appl. Algorithms 18, 149--161, 2011.
  • Saker, S. H., Lyapunov type inequalities for a second order differential equation with a damping term, Ann. Polon. Math. 103 (1), 37--57, 2012.
  • Saker, S. H., Opial's type inequalities on time scales and some applications, Ann. Polon. Math. 104, 243--260, 2012.
  • Saker, S. H., Applications of Opial inequalities on time scales on dynamic equations with damping terms, Math. Comp. Model.58, 1777--1790, 2013.
  • Saker, S. H., Osman, M. M., O'Regan, D., Agarwal, R. P., Some new Opial dynamic inequalities with weighted functions on time scales, Math. Ineq. Appl. 18 (3), 1171--1187, 2015.
  • Tiryaki, A., Recent development of Lyapunov-type inequalities, Advances in Dyn. Syst. Appl. 5 (2), 231--248, 2010.
  • Wintner, A., On the nonexistence of conjugate points, Amer. J. Math. 73, 368--380, 1951.
  • Yang, X., On inequalities of Lyapunov type, Appl. Math. Comp. 134, 293--300, 2003.
There are 27 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

S. H. Saker This is me

M. M. Osman This is me

D. O'regan

R. P. Agarwal

Publication Date December 12, 2018
Published in Issue Year 2018 Volume: 47 Issue: 6

Cite

APA Saker, S. H., Osman, M. M., O’regan, D., Agarwal, R. P. (2018). Lyapunov inequalities for dynamic equations via new Opial type inequalities. Hacettepe Journal of Mathematics and Statistics, 47(6), 1537-1551.
AMA Saker SH, Osman MM, O’regan D, Agarwal RP. Lyapunov inequalities for dynamic equations via new Opial type inequalities. Hacettepe Journal of Mathematics and Statistics. December 2018;47(6):1537-1551.
Chicago Saker, S. H., M. M. Osman, D. O’regan, and R. P. Agarwal. “Lyapunov Inequalities for Dynamic Equations via New Opial Type Inequalities”. Hacettepe Journal of Mathematics and Statistics 47, no. 6 (December 2018): 1537-51.
EndNote Saker SH, Osman MM, O’regan D, Agarwal RP (December 1, 2018) Lyapunov inequalities for dynamic equations via new Opial type inequalities. Hacettepe Journal of Mathematics and Statistics 47 6 1537–1551.
IEEE S. H. Saker, M. M. Osman, D. O’regan, and R. P. Agarwal, “Lyapunov inequalities for dynamic equations via new Opial type inequalities”, Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 6, pp. 1537–1551, 2018.
ISNAD Saker, S. H. et al. “Lyapunov Inequalities for Dynamic Equations via New Opial Type Inequalities”. Hacettepe Journal of Mathematics and Statistics 47/6 (December 2018), 1537-1551.
JAMA Saker SH, Osman MM, O’regan D, Agarwal RP. Lyapunov inequalities for dynamic equations via new Opial type inequalities. Hacettepe Journal of Mathematics and Statistics. 2018;47:1537–1551.
MLA Saker, S. H. et al. “Lyapunov Inequalities for Dynamic Equations via New Opial Type Inequalities”. Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 6, 2018, pp. 1537-51.
Vancouver Saker SH, Osman MM, O’regan D, Agarwal RP. Lyapunov inequalities for dynamic equations via new Opial type inequalities. Hacettepe Journal of Mathematics and Statistics. 2018;47(6):1537-51.