Year 2025,
Volume: 54 Issue: 2, 389 - 403, 28.04.2025
Faiza Jamil
,
Agha Kashif
,
Sohail Zafar
References
-
[1] S. Aisyah, M.I. Utoyo and L. Susilowati, On the local fractional metric dimension
of corona product graphs, IOP Conference Series: Earth and Environmental Science
243, 2019.
-
[2] S. Arumugam and V. Mathew, The fractional metric dimension of graphs, Discrete
Math. 312, 1584-1590, 2012.
-
[3] Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffman, M. Mihalak and L.
Ram, Network discovery and verification, IEEE J. Sel. Areas Commun. 24, 2168-
2181, 2006.
-
[4] G. Chartrand, I. Eroh, M.A. Johnson and O.R. Oellermann, Resolvability in graphs
and the metric dimension of a graph, Discrete Appl. Math. 105, 99 - 113, 2000.
-
[5] Y. M. Chu, M. F. Nadeem, M. Azeem and M. K. Siddiqui, On Sharp Bounds on
Partition Dimension of Convex Polytopes, IEEE Access 8, 224781-224790, 2020.
-
[6] J. Currie and O.R. Oellermann, The metric dimension and metric independence of
a graph, Journal of Combinatorial Mathematics and Combinatorial Computing 39,
157 - 167, 2001.
-
[7] M. Feher, S. Gosselin and O.R. Oellermann, The metric dimension of Cayley diagraph,
Discrete Math. 306, 31 - 41, 2006.
-
[8] F. Harary and R.A. Melter, On the metric dimension of a graph, Ars Comb. 2,
191-195, 1976.
-
[9] M. Imran, S.A.H. Bokhary and A.Q. Baig, On families of convex polytopes with
constant metric dimension, Comput. Math. Appl. 60 (9), 2629-2638, 2010.
-
[10] F. Jamil, A. Kashif, S. Zafar, Z. Bassfer and A.M. Alanazi, Local fractional strong
metric dimension of certain rotationally symmetric planer networks, IEEE Access
9, 2021.
-
[11] F. Jamil, A. Kashif, S. Zafar and A. Nawaz, Fractional strong metric resolvability
in graphs (submitted).
-
[12] C.X. Kang, On the fractional strong metric dimension of graphs, Discrete Appl.
Math. 251, 190 - 203, 2018.
-
[13] C.X. Kang and E. Yi, The fractional strong metric dimension of graphs, International
Conference on Combinatorial Optimization and Applications 8287, 84-95, 2013.
-
[14] S. Khullar, B. Raghavchari and A. Rosenfeld, Landmarks in graphs, Discrete Appl.
Math. 70, 217 - 229, 1996.
-
[15] J.B. Liu, M.K. Aslam and M. Javaid, Local fractional metric dimensions of rotationally
symmetric and planar Networks, IEEE Access 8, 82404-82420, 2020.
-
[16] J.B. Liu, A. Kashif, T. Rashid and M. Javaid, Fractional metric dimension of generalized
Jahangir graph, Mathematics 7 , 1-10, 2019.
-
[17] F. Okamoto, L. Crosse, B. Phinezy and P. Zhang, The local metric dimension of a
graph, Math. Bohem. 135, 239-255, 2010.
-
[18] O.R. Ollermann and J. Peters-Fransen, The strong metric dimension of graphs and
diagraphs, Discrete Appl. Math. 155, 356 - 364, 2007.
-
[19] H. Raza, S. Hayat and X. Pan, On the fault-tolerant metric dimension of convex
polytopes, Appl. Math. Comput. 339, 172 - 185, 2018.
-
[20] A. Seb¨o and E. Tannier, On metric generators of graphs, Math. Oper. Res. 29,
383-393, 2004.
-
[21] P.J. Slater, Leaves of trees, Congressus Numerantium 14, 549-559, 1975.
Fractional strong metric dimension of convex polytopes and its applications
Year 2025,
Volume: 54 Issue: 2, 389 - 403, 28.04.2025
Faiza Jamil
,
Agha Kashif
,
Sohail Zafar
Abstract
The fractional versions of various metric related parameters have recently gained importance due to their applications in the fields of sensor networking, robot navigation and linear optimization problems. Convex polytopes are collection of those polytopes of Euclidean space which are their convex subsets. They have key importance in the field of network designing due to their stable and resilient structure which aids optimal data transfer. The identification and removal of components (nodes) of a communication network causing abruption in its flow is of key importance for optimal data transmission. These components are referred as strong resolving neighbourhood (SRNs) in graph theory and assigning least weight to these components aids the computation of fractional strong metric dimension (FSMD). In this paper, we compute FSMD for certain convex polytopes which include $\mathbb{P}_{n}$, $\mathbb{P}_{n}^{1}$ and $\mathbb{P}_{n}^{2}$. In this regard, it is shown that for $n \geq 3$, FSMD of $\mathbb{P}_{n}$ and $\mathbb{P}_{n}^{2}$ is $n$ and $\frac{3n}{2}$, respectively. Also, FSMD of $\mathbb{P}_{n}^{1}$ is $n$ when $n$ is odd and $\frac{3n}{2}$ when $n$ is even. Finally, an application of FSMD in the context of internet connection networks is furnished.
References
-
[1] S. Aisyah, M.I. Utoyo and L. Susilowati, On the local fractional metric dimension
of corona product graphs, IOP Conference Series: Earth and Environmental Science
243, 2019.
-
[2] S. Arumugam and V. Mathew, The fractional metric dimension of graphs, Discrete
Math. 312, 1584-1590, 2012.
-
[3] Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffman, M. Mihalak and L.
Ram, Network discovery and verification, IEEE J. Sel. Areas Commun. 24, 2168-
2181, 2006.
-
[4] G. Chartrand, I. Eroh, M.A. Johnson and O.R. Oellermann, Resolvability in graphs
and the metric dimension of a graph, Discrete Appl. Math. 105, 99 - 113, 2000.
-
[5] Y. M. Chu, M. F. Nadeem, M. Azeem and M. K. Siddiqui, On Sharp Bounds on
Partition Dimension of Convex Polytopes, IEEE Access 8, 224781-224790, 2020.
-
[6] J. Currie and O.R. Oellermann, The metric dimension and metric independence of
a graph, Journal of Combinatorial Mathematics and Combinatorial Computing 39,
157 - 167, 2001.
-
[7] M. Feher, S. Gosselin and O.R. Oellermann, The metric dimension of Cayley diagraph,
Discrete Math. 306, 31 - 41, 2006.
-
[8] F. Harary and R.A. Melter, On the metric dimension of a graph, Ars Comb. 2,
191-195, 1976.
-
[9] M. Imran, S.A.H. Bokhary and A.Q. Baig, On families of convex polytopes with
constant metric dimension, Comput. Math. Appl. 60 (9), 2629-2638, 2010.
-
[10] F. Jamil, A. Kashif, S. Zafar, Z. Bassfer and A.M. Alanazi, Local fractional strong
metric dimension of certain rotationally symmetric planer networks, IEEE Access
9, 2021.
-
[11] F. Jamil, A. Kashif, S. Zafar and A. Nawaz, Fractional strong metric resolvability
in graphs (submitted).
-
[12] C.X. Kang, On the fractional strong metric dimension of graphs, Discrete Appl.
Math. 251, 190 - 203, 2018.
-
[13] C.X. Kang and E. Yi, The fractional strong metric dimension of graphs, International
Conference on Combinatorial Optimization and Applications 8287, 84-95, 2013.
-
[14] S. Khullar, B. Raghavchari and A. Rosenfeld, Landmarks in graphs, Discrete Appl.
Math. 70, 217 - 229, 1996.
-
[15] J.B. Liu, M.K. Aslam and M. Javaid, Local fractional metric dimensions of rotationally
symmetric and planar Networks, IEEE Access 8, 82404-82420, 2020.
-
[16] J.B. Liu, A. Kashif, T. Rashid and M. Javaid, Fractional metric dimension of generalized
Jahangir graph, Mathematics 7 , 1-10, 2019.
-
[17] F. Okamoto, L. Crosse, B. Phinezy and P. Zhang, The local metric dimension of a
graph, Math. Bohem. 135, 239-255, 2010.
-
[18] O.R. Ollermann and J. Peters-Fransen, The strong metric dimension of graphs and
diagraphs, Discrete Appl. Math. 155, 356 - 364, 2007.
-
[19] H. Raza, S. Hayat and X. Pan, On the fault-tolerant metric dimension of convex
polytopes, Appl. Math. Comput. 339, 172 - 185, 2018.
-
[20] A. Seb¨o and E. Tannier, On metric generators of graphs, Math. Oper. Res. 29,
383-393, 2004.
-
[21] P.J. Slater, Leaves of trees, Congressus Numerantium 14, 549-559, 1975.