Research Article
BibTex RIS Cite

On Some Bounds of Degree Based Topological Indices for Total Graphs

Year 2024, Early Access, 1 - 12
https://doi.org/10.15672/hujms.1240245

Abstract

In this paper, we discuss the concept of total graph and computed some topological indices. If $\Theta$ is a simple graph, then the elements of $\Theta$ are the vertices $\Theta_V$ and edges $\Theta_E$. For $ e=u\acute{u}\in \Theta_E$, the vertex $u$ and edge $e$, as well as $\acute{u}$ and $e$, are incident. We define the general harmonic $(GH)$ index and general sum connectivity $(GS)$ index for graph $\Theta$ regarding incident vertex-edge degrees as: $H_s^{\alpha}(\Theta)=\sum_{e\acute{u}}\big(\frac{2}{\aleph_{\acute{u}}+\aleph_{e}}\big)^{\alpha}$ and $\hat{\chi}_s^{\alpha}(\Theta)=\sum_{e\acute{u}}(\aleph_{\acute{u}}+\aleph_{e})^{\alpha}$, where $\alpha$ is any real number. In this article, we derive the closed formulas for a few standard graphs for $(GH)$ and $(GS)$ indices and then go on to calculate the lowest and the greatest general harmonic index, as well as the general sum-connectivity index, for various graphs that correspond to their total graphs.

References

  • [1] D. Amic´, D. Beslo, B. Lucic, S. Nikolic and N. Trinajstic, The vertex-connectivity index revisited, J. Chem. Inf. Comput. Sci. 38 (5), 819-822, 1998.
Year 2024, Early Access, 1 - 12
https://doi.org/10.15672/hujms.1240245

Abstract

References

  • [1] D. Amic´, D. Beslo, B. Lucic, S. Nikolic and N. Trinajstic, The vertex-connectivity index revisited, J. Chem. Inf. Comput. Sci. 38 (5), 819-822, 1998.
There are 1 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Hong Yang 0000-0002-5374-5829

Dingtian Zhang 0009-0006-7284-5151

Muhammad Farhan Hanif 0000-0002-2439-3967

Muhammad Faisal Hanif 0009-0006-2278-3132

Shazia Manzoor 0000-0001-9867-7148

Muhammad Kamran Siddiqui 0000-0002-2607-4847

Early Pub Date April 14, 2024
Publication Date
Published in Issue Year 2024 Early Access

Cite

APA Yang, H., Zhang, D., Hanif, M. F., Hanif, M. F., et al. (2024). On Some Bounds of Degree Based Topological Indices for Total Graphs. Hacettepe Journal of Mathematics and Statistics1-12. https://doi.org/10.15672/hujms.1240245
AMA Yang H, Zhang D, Hanif MF, Hanif MF, Manzoor S, Siddiqui MK. On Some Bounds of Degree Based Topological Indices for Total Graphs. Hacettepe Journal of Mathematics and Statistics. Published online April 1, 2024:1-12. doi:10.15672/hujms.1240245
Chicago Yang, Hong, Dingtian Zhang, Muhammad Farhan Hanif, Muhammad Faisal Hanif, Shazia Manzoor, and Muhammad Kamran Siddiqui. “On Some Bounds of Degree Based Topological Indices for Total Graphs”. Hacettepe Journal of Mathematics and Statistics, April (April 2024), 1-12. https://doi.org/10.15672/hujms.1240245.
EndNote Yang H, Zhang D, Hanif MF, Hanif MF, Manzoor S, Siddiqui MK (April 1, 2024) On Some Bounds of Degree Based Topological Indices for Total Graphs. Hacettepe Journal of Mathematics and Statistics 1–12.
IEEE H. Yang, D. Zhang, M. F. Hanif, M. F. Hanif, S. Manzoor, and M. K. Siddiqui, “On Some Bounds of Degree Based Topological Indices for Total Graphs”, Hacettepe Journal of Mathematics and Statistics, pp. 1–12, April 2024, doi: 10.15672/hujms.1240245.
ISNAD Yang, Hong et al. “On Some Bounds of Degree Based Topological Indices for Total Graphs”. Hacettepe Journal of Mathematics and Statistics. April 2024. 1-12. https://doi.org/10.15672/hujms.1240245.
JAMA Yang H, Zhang D, Hanif MF, Hanif MF, Manzoor S, Siddiqui MK. On Some Bounds of Degree Based Topological Indices for Total Graphs. Hacettepe Journal of Mathematics and Statistics. 2024;:1–12.
MLA Yang, Hong et al. “On Some Bounds of Degree Based Topological Indices for Total Graphs”. Hacettepe Journal of Mathematics and Statistics, 2024, pp. 1-12, doi:10.15672/hujms.1240245.
Vancouver Yang H, Zhang D, Hanif MF, Hanif MF, Manzoor S, Siddiqui MK. On Some Bounds of Degree Based Topological Indices for Total Graphs. Hacettepe Journal of Mathematics and Statistics. 2024:1-12.