Research Article
BibTex RIS Cite

A note on the embedding properties of $p$-subgroups in finite groups

Year 2019, Volume: 48 Issue: 1, 102 - 111, 01.02.2019

Abstract

In this note, we prove that a finite group $G$ is $p$-supersolvable if and only if there exists a power $d$ of $p$ with $p^2 \leq d < |P|$ such that $H\cap O^p(G^*_p)$ is normal in $O^p(G)$ for all non-cyclic normal subgroups $H$ of $P$ with $|H| = d$, where $P$ is a Sylow $p$-subgroup of $G$. Moreover, we also prove that either $l_p(G)\leq 1$ and $r_p(G) \leq 2$ or else $|P\cap O^p(G)| > d$ if there exists a power $d$ of $p$ with $1 \leq d < |P|$ such that $H\cap O^p(G^*_{p^2})$ is normal in $O^p(G)$ for all non-meta-cyclic normal subgroups $H$ of $P$ with $|H| = d$.

References

  • A. Ballester-Bolinches, R. Esteban-Romero and S. Qiao, A note on a result of Guo and Isaacs about p-supersolubility of finite groups, Arch. Math. (Basel) 106 (6), 501- 506, 2016.
  • Y. Berkovich and I.M. Isaacs, p-Supersolvability and actions on p-groups stabilizing certain subgroups, J. Algebra 414 82-94, 2014.
  • Y. Berkovich and Z. Janko, Groups of prime power order Vol. 1, Walter de Gruyter, Berlin, New York, 2008.
  • Y. Berkovich and Z. Janko, Groups of prime power order Vol 2, Walter de Gruyter, Berlin, New York, 2008.
  • K. Doerk and T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin, 1992.
  • Y. Guo and I.M. Isaacs, Conditions on p-subgroups implying p-nilpotence or psupersolvability, Arch. Math. (Basel) 105 (3), 215-222, 2015.
  • X. Guo and H. Meng, Actions on p-groups with the kernel containing the -residuals, Comm. Algebra, 45 (7), 3022-3033, 2017.
  • X. Guo and B. Zhang, Conditions on p-subgroups implying p-supersolvability, J. Algebra Appl. 16 (10) 1750196, 9 pages, 2017.
  • B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1967.
  • I.M. Isaacs, Finite group theory, Graduate Studies in Math. 92 AMS Providence, 2008.
  • R.M. Peacock, Groups with a cyclic sylow subgroup, J. Algebra 56, 506-509, 1979.
  • L. Wang and Y. Wang, On s-semipermutable maximal and minimal subgroups of Sylow p-subgroups of finite groups, Comm. Algebra 34, 143-149, 2006.
  • H. Yu, Some sufficient and necessary conditions for p-supersolvablity and p-nilpotence of a finite group. J. Algebra Appl. 16 (2), 1750052, 9 pages, 2017.
Year 2019, Volume: 48 Issue: 1, 102 - 111, 01.02.2019

Abstract

References

  • A. Ballester-Bolinches, R. Esteban-Romero and S. Qiao, A note on a result of Guo and Isaacs about p-supersolubility of finite groups, Arch. Math. (Basel) 106 (6), 501- 506, 2016.
  • Y. Berkovich and I.M. Isaacs, p-Supersolvability and actions on p-groups stabilizing certain subgroups, J. Algebra 414 82-94, 2014.
  • Y. Berkovich and Z. Janko, Groups of prime power order Vol. 1, Walter de Gruyter, Berlin, New York, 2008.
  • Y. Berkovich and Z. Janko, Groups of prime power order Vol 2, Walter de Gruyter, Berlin, New York, 2008.
  • K. Doerk and T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin, 1992.
  • Y. Guo and I.M. Isaacs, Conditions on p-subgroups implying p-nilpotence or psupersolvability, Arch. Math. (Basel) 105 (3), 215-222, 2015.
  • X. Guo and H. Meng, Actions on p-groups with the kernel containing the -residuals, Comm. Algebra, 45 (7), 3022-3033, 2017.
  • X. Guo and B. Zhang, Conditions on p-subgroups implying p-supersolvability, J. Algebra Appl. 16 (10) 1750196, 9 pages, 2017.
  • B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1967.
  • I.M. Isaacs, Finite group theory, Graduate Studies in Math. 92 AMS Providence, 2008.
  • R.M. Peacock, Groups with a cyclic sylow subgroup, J. Algebra 56, 506-509, 1979.
  • L. Wang and Y. Wang, On s-semipermutable maximal and minimal subgroups of Sylow p-subgroups of finite groups, Comm. Algebra 34, 143-149, 2006.
  • H. Yu, Some sufficient and necessary conditions for p-supersolvablity and p-nilpotence of a finite group. J. Algebra Appl. 16 (2), 1750052, 9 pages, 2017.
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Boru Zhang This is me

Xiuyun Guo

Publication Date February 1, 2019
Published in Issue Year 2019 Volume: 48 Issue: 1

Cite

APA Zhang, B., & Guo, X. (2019). A note on the embedding properties of $p$-subgroups in finite groups. Hacettepe Journal of Mathematics and Statistics, 48(1), 102-111.
AMA Zhang B, Guo X. A note on the embedding properties of $p$-subgroups in finite groups. Hacettepe Journal of Mathematics and Statistics. February 2019;48(1):102-111.
Chicago Zhang, Boru, and Xiuyun Guo. “A Note on the Embedding Properties of $p$-Subgroups in Finite Groups”. Hacettepe Journal of Mathematics and Statistics 48, no. 1 (February 2019): 102-11.
EndNote Zhang B, Guo X (February 1, 2019) A note on the embedding properties of $p$-subgroups in finite groups. Hacettepe Journal of Mathematics and Statistics 48 1 102–111.
IEEE B. Zhang and X. Guo, “A note on the embedding properties of $p$-subgroups in finite groups”, Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 1, pp. 102–111, 2019.
ISNAD Zhang, Boru - Guo, Xiuyun. “A Note on the Embedding Properties of $p$-Subgroups in Finite Groups”. Hacettepe Journal of Mathematics and Statistics 48/1 (February 2019), 102-111.
JAMA Zhang B, Guo X. A note on the embedding properties of $p$-subgroups in finite groups. Hacettepe Journal of Mathematics and Statistics. 2019;48:102–111.
MLA Zhang, Boru and Xiuyun Guo. “A Note on the Embedding Properties of $p$-Subgroups in Finite Groups”. Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 1, 2019, pp. 102-11.
Vancouver Zhang B, Guo X. A note on the embedding properties of $p$-subgroups in finite groups. Hacettepe Journal of Mathematics and Statistics. 2019;48(1):102-11.