Research Article
BibTex RIS Cite

Hom-coalgebra cleft extensions and braided tensor Hom-categories of Hom-entwining structures

Year 2019, Volume: 48 Issue: 1, 186 - 199, 01.02.2019

Abstract

We investigate how the category of Hom-entwined modules can be made into a monoidal category. The sufficient and necessary conditions making the category of Hom-entwined modules have a braiding are given. Also, we formulate the concept of Hom-cleft extension for a Hom-entwining structure, and prove that if $(A, \alpha)$ is a $(C,\gamma)$-cleft extension, then there is an isomorphism of Hom-algebras between $(A, \alpha)$ and  a crossed product Hom-algebra of $A^{coC}$ and $C$.

References

  • J.N. Alonso Álvarez, J.M. Fernández Vilaboaa, R. González Rodriguez, et al. Weak C-cleft extensions, weak entwining structures and weak Hopf algebras, J. Algebra 284, 679–704, 2005.
  • T. Brzezinski and S. Majid, Coalgebra bundles, Comm. Math. Phys. 191, 467–492, 1998.
  • T. Brzezinski, On modules associated to coalgebra Galois extensions, J. Algebra 215, 290–317, 1999.
  • S. Caenepeel and I. Goyvaerts Monoidal Hom-Hopf algebras, Comm. Algebra 39 (6), 2216–2240, 2011.
  • S. Caenepeel, F. van Oystaeyen and B. Zhou, Making the category of Doi-Hopf modules into a braided monoidal category, Algebr. Represent. Theory 1 (1), 75–96, 1998.
  • Q.G. Chen and D.G. Wang, Constructing quasitriangular Hopf algebras, Comm. Algebra 43 (4), 1698–1722, 2015.
  • Q.G. Chen and D.G. Wang, A class of coquasitriangular Hopf group algebras, Comm. Algebra 44 (1), 310–335, 2016.
  • Q.G. Chen and D.G. Wang, A duality Theorem for L-R crossed product, Filomat 30 (5), 1305–1313, 2016.
  • Q.G. Chen, D.G. Wang and X.D. Kang, Twisted partial coactions of Hopf algebras, Front. Math. China 12, 63–86, 2017.
  • Y.Y. Chen, Z.W. Wang and L.Y. Zhang, The fundamental theorem and Maschke’s theorem in the category of relative Hom-Hopf modules, Colloq. Math. 144 (1), 55–71, 2016.
  • Y. Doi and M. Takeuchi, Cleft comodule algebras for a bialgebra, Comm. Algebra 14, 801–817, 1986.
  • J.M. Fernández Vilaboa and E. Villanueva Novoa, A Characterization of the cleft comodule triples, Comm. Algebra 16, 613–622, 1988.
  • S.J. Guo, X.H. Zhang and S.X. Wang, Braided monoidal categories and Doi-Hopf modules for monoidal Hom-Hopf algebras, Colloq. Math. 143 (1), 79–103, 2016.
  • S. Karacuha, Hom-entwining structures and Hom-Hopf-type modules, arXiv:1412.2002v2.
  • H.F. Kreimer and M. Takeuchi, Hopf algebras and Galois extensions of an algebra, Indiana Univ. Math. J. 30, 675–691, 1981.
  • L. Liu and B.L. Shen, Radford’s biproducts and Yetter-Drinfel’d modules for monoidal Hom-Hopf algebras, J. Math. Phys. 55, 031701, 2014.
  • L. Liu and S.H. Wang, Making the category of entwined modules into a braided monoidal category, J. Southeast Univ. (English Ed.) 24 (2), 250–252, 2008.
  • A. Makhlouf and F. Panaite, Yetter-Drinfeld modules for Hom-bialgebras, J. Math. Phys. 55, 013501, 2014.
  • A. Makhlouf and S.D. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl. 2(2), 51–64, 2008.
  • A. Makhlouf and S.D. Silvestrov, Hom-algebras and Hom-coalgebras, J. Algebra Appl. 9 (4), 553–589, 2010.
  • D. Yau, Hom-Yang-Baxter-equation, Hom-Lie algebras and quasitriangular bialgebras, J. Phys. A 42, 165202, 2009.
  • D. Yau, Hom-algebras and homology, J. Lie Theory 19, 409–421, 2009.
  • D. Yau, Hom-quantum groups I: Quasitriangular Hom-bialgebras, J. Phys A 45, 065203, 2012.
  • X.F. Zhao and X.H. Zhang, Lazy 2-cocycles over monoidal Hom-Hopf algebras, Colloq. Math. 142, 61–81, 2016.
Year 2019, Volume: 48 Issue: 1, 186 - 199, 01.02.2019

Abstract

References

  • J.N. Alonso Álvarez, J.M. Fernández Vilaboaa, R. González Rodriguez, et al. Weak C-cleft extensions, weak entwining structures and weak Hopf algebras, J. Algebra 284, 679–704, 2005.
  • T. Brzezinski and S. Majid, Coalgebra bundles, Comm. Math. Phys. 191, 467–492, 1998.
  • T. Brzezinski, On modules associated to coalgebra Galois extensions, J. Algebra 215, 290–317, 1999.
  • S. Caenepeel and I. Goyvaerts Monoidal Hom-Hopf algebras, Comm. Algebra 39 (6), 2216–2240, 2011.
  • S. Caenepeel, F. van Oystaeyen and B. Zhou, Making the category of Doi-Hopf modules into a braided monoidal category, Algebr. Represent. Theory 1 (1), 75–96, 1998.
  • Q.G. Chen and D.G. Wang, Constructing quasitriangular Hopf algebras, Comm. Algebra 43 (4), 1698–1722, 2015.
  • Q.G. Chen and D.G. Wang, A class of coquasitriangular Hopf group algebras, Comm. Algebra 44 (1), 310–335, 2016.
  • Q.G. Chen and D.G. Wang, A duality Theorem for L-R crossed product, Filomat 30 (5), 1305–1313, 2016.
  • Q.G. Chen, D.G. Wang and X.D. Kang, Twisted partial coactions of Hopf algebras, Front. Math. China 12, 63–86, 2017.
  • Y.Y. Chen, Z.W. Wang and L.Y. Zhang, The fundamental theorem and Maschke’s theorem in the category of relative Hom-Hopf modules, Colloq. Math. 144 (1), 55–71, 2016.
  • Y. Doi and M. Takeuchi, Cleft comodule algebras for a bialgebra, Comm. Algebra 14, 801–817, 1986.
  • J.M. Fernández Vilaboa and E. Villanueva Novoa, A Characterization of the cleft comodule triples, Comm. Algebra 16, 613–622, 1988.
  • S.J. Guo, X.H. Zhang and S.X. Wang, Braided monoidal categories and Doi-Hopf modules for monoidal Hom-Hopf algebras, Colloq. Math. 143 (1), 79–103, 2016.
  • S. Karacuha, Hom-entwining structures and Hom-Hopf-type modules, arXiv:1412.2002v2.
  • H.F. Kreimer and M. Takeuchi, Hopf algebras and Galois extensions of an algebra, Indiana Univ. Math. J. 30, 675–691, 1981.
  • L. Liu and B.L. Shen, Radford’s biproducts and Yetter-Drinfel’d modules for monoidal Hom-Hopf algebras, J. Math. Phys. 55, 031701, 2014.
  • L. Liu and S.H. Wang, Making the category of entwined modules into a braided monoidal category, J. Southeast Univ. (English Ed.) 24 (2), 250–252, 2008.
  • A. Makhlouf and F. Panaite, Yetter-Drinfeld modules for Hom-bialgebras, J. Math. Phys. 55, 013501, 2014.
  • A. Makhlouf and S.D. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl. 2(2), 51–64, 2008.
  • A. Makhlouf and S.D. Silvestrov, Hom-algebras and Hom-coalgebras, J. Algebra Appl. 9 (4), 553–589, 2010.
  • D. Yau, Hom-Yang-Baxter-equation, Hom-Lie algebras and quasitriangular bialgebras, J. Phys. A 42, 165202, 2009.
  • D. Yau, Hom-algebras and homology, J. Lie Theory 19, 409–421, 2009.
  • D. Yau, Hom-quantum groups I: Quasitriangular Hom-bialgebras, J. Phys A 45, 065203, 2012.
  • X.F. Zhao and X.H. Zhang, Lazy 2-cocycles over monoidal Hom-Hopf algebras, Colloq. Math. 142, 61–81, 2016.
There are 24 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Chen Quanguo

Wang Dingguo This is me

Publication Date February 1, 2019
Published in Issue Year 2019 Volume: 48 Issue: 1

Cite

APA Quanguo, C., & Dingguo, W. (2019). Hom-coalgebra cleft extensions and braided tensor Hom-categories of Hom-entwining structures. Hacettepe Journal of Mathematics and Statistics, 48(1), 186-199.
AMA Quanguo C, Dingguo W. Hom-coalgebra cleft extensions and braided tensor Hom-categories of Hom-entwining structures. Hacettepe Journal of Mathematics and Statistics. February 2019;48(1):186-199.
Chicago Quanguo, Chen, and Wang Dingguo. “Hom-Coalgebra Cleft Extensions and Braided Tensor Hom-Categories of Hom-Entwining Structures”. Hacettepe Journal of Mathematics and Statistics 48, no. 1 (February 2019): 186-99.
EndNote Quanguo C, Dingguo W (February 1, 2019) Hom-coalgebra cleft extensions and braided tensor Hom-categories of Hom-entwining structures. Hacettepe Journal of Mathematics and Statistics 48 1 186–199.
IEEE C. Quanguo and W. Dingguo, “Hom-coalgebra cleft extensions and braided tensor Hom-categories of Hom-entwining structures”, Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 1, pp. 186–199, 2019.
ISNAD Quanguo, Chen - Dingguo, Wang. “Hom-Coalgebra Cleft Extensions and Braided Tensor Hom-Categories of Hom-Entwining Structures”. Hacettepe Journal of Mathematics and Statistics 48/1 (February 2019), 186-199.
JAMA Quanguo C, Dingguo W. Hom-coalgebra cleft extensions and braided tensor Hom-categories of Hom-entwining structures. Hacettepe Journal of Mathematics and Statistics. 2019;48:186–199.
MLA Quanguo, Chen and Wang Dingguo. “Hom-Coalgebra Cleft Extensions and Braided Tensor Hom-Categories of Hom-Entwining Structures”. Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 1, 2019, pp. 186-99.
Vancouver Quanguo C, Dingguo W. Hom-coalgebra cleft extensions and braided tensor Hom-categories of Hom-entwining structures. Hacettepe Journal of Mathematics and Statistics. 2019;48(1):186-99.