Research Article
BibTex RIS Cite
Year 2016, Volume: 45 Issue: 1, 107 - 120, 01.02.2016

Abstract

References

  • ...

⊕-supplemented modules relative to an ideal

Year 2016, Volume: 45 Issue: 1, 107 - 120, 01.02.2016

Abstract

Let $I$ be an ideal of a ring $R$ and let $M$ be a left
$R$-module. A submodule $L$ of $M$ is said to be $\delta$-small in $M$ provided
$M \neq L + X$ for any proper submodule $X$ of $M$ with $M/X$ singular. An
$R$-module $M$ is called $I-\bigoplus
$-supplemented if for every submodule $N$ of $M$, there
exists a direct summand $K$ of $M$ such that $M = N + K$, $N \cap K \subseteq
IK$ and $N \cap K$ is $\delta$-small in $K$. In this paper, we investigate some
properties of $I-\bigoplus$-supplemented modules. We also compare $I-\bigoplus$-supplemented
modules with $\bigoplus$-supplemented modules. The structure of $I-\bigoplus$-supplemented
modules and $\bigoplus-\delta$-supplemented modules over a Dedekind domain is
completely determined.

References

  • ...
There are 1 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Rachid Tribak

Yahya Talebi

Ali Reza Moniri Hamzekolaee

Samira Asgari This is me

Publication Date February 1, 2016
Published in Issue Year 2016 Volume: 45 Issue: 1

Cite

APA Tribak, R., Talebi, Y., Hamzekolaee, A. R. M., Asgari, S. (2016). ⊕-supplemented modules relative to an ideal. Hacettepe Journal of Mathematics and Statistics, 45(1), 107-120.
AMA Tribak R, Talebi Y, Hamzekolaee ARM, Asgari S. ⊕-supplemented modules relative to an ideal. Hacettepe Journal of Mathematics and Statistics. February 2016;45(1):107-120.
Chicago Tribak, Rachid, Yahya Talebi, Ali Reza Moniri Hamzekolaee, and Samira Asgari. “⊕-Supplemented Modules Relative to an Ideal”. Hacettepe Journal of Mathematics and Statistics 45, no. 1 (February 2016): 107-20.
EndNote Tribak R, Talebi Y, Hamzekolaee ARM, Asgari S (February 1, 2016) ⊕-supplemented modules relative to an ideal. Hacettepe Journal of Mathematics and Statistics 45 1 107–120.
IEEE R. Tribak, Y. Talebi, A. R. M. Hamzekolaee, and S. Asgari, “⊕-supplemented modules relative to an ideal”, Hacettepe Journal of Mathematics and Statistics, vol. 45, no. 1, pp. 107–120, 2016.
ISNAD Tribak, Rachid et al. “⊕-Supplemented Modules Relative to an Ideal”. Hacettepe Journal of Mathematics and Statistics 45/1 (February 2016), 107-120.
JAMA Tribak R, Talebi Y, Hamzekolaee ARM, Asgari S. ⊕-supplemented modules relative to an ideal. Hacettepe Journal of Mathematics and Statistics. 2016;45:107–120.
MLA Tribak, Rachid et al. “⊕-Supplemented Modules Relative to an Ideal”. Hacettepe Journal of Mathematics and Statistics, vol. 45, no. 1, 2016, pp. 107-20.
Vancouver Tribak R, Talebi Y, Hamzekolaee ARM, Asgari S. ⊕-supplemented modules relative to an ideal. Hacettepe Journal of Mathematics and Statistics. 2016;45(1):107-20.