Research Article
BibTex RIS Cite

Distribution of zeros of sublinear dynamic equations with a damping term on time scales

Year 2016, Volume: 45 Issue: 2, 455 - 471, 01.04.2016

Abstract

In this paper, for a second order sublinear dynamic equation with a
damping term we will study the lower bounds of the distance between
zeros of a solution and/or its derivatives and then establish some new
criteria for disconjugacy and disfocality. Our results present a slight
improvement to some results proved in the litrature. As a special case
when T = R, for a second order linear differential equation, we get some
results proved by Brown and Harris as a consequence of our results. The
results will be proved by employing the time scales Hölder inequality,
the time scales chain rule and some new dynamic Opial-type inequalities
designed and proved for this purpose. 

References

  • Agarwal, R.P. and Pang, P.Y.H. Opial inequalities with Applications in Differential and Difference Equations, Kluwer, Dordrechet (1995).
  • Bohner, M. and Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, Mass, USA (2001).
  • Bohner, M. and Peterson, A., Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston (2003).
  • Bohner, M. and Kaymakçalan, B. Opial Inequalities on time scales, Annal. Polon. Math. 77 (2001), 11-20.
  • Bohner, M., Clark, S. and Ridenhour, J. Lyapunov inequalities for time scales, J. Ineq. Appl. 7 (2002), 61-77.
  • Brown, R.C. and Hinton, D.B. Lyapunov inequalities and their applications, in: T. M. Rassias (Ed.), Survey on Classical Inequalities, Kluwer Academic Publishers, Dordrecht, The Netherlands (2000), 1-25.
  • Brown, R.C. and Hinton, D.B. Opial’s inequality and oscillation of 2 nd order equations, Proc. Amer. Math. Soc. 125 (1997), 1123-1129.
  • Cheng, S. Lyapunov inequalities for differential and difference equations, Fasc. Math. 23 (1991) 25–41.
  • Cohn, J.H.E. Consecutive zeros of solutions of ordinary second order differential equations, J. Lond. Math. Soc. 2 (5) (1972), 465-468.
  • Harris, B. J. and Kong, Q. On the oscillation of differential equations with an oscillatory coefficient, Transc. Amer. Math. Soc. 347 (5) (1995), 1831-1839.
  • Hartman, P. Ordinary Differential Equations, Wiley, New York, (1964) and Birkhäuser, Boston (1982).
  • Hartman, P. and Wintner, A. On an oscillation criterion of de la Vallée Poussin, Quart. Appl. Math. 13 (1955), 330-332.
  • Karpuz, B., Kaymakçalan, B. and Öclan, Ö. A generalization of Opial’s inequality and applications to second order dynamic equations, Diff. Eqns. Dyn. Sys. 18 (2010), 11-18.
  • M. K. Kwong, On Lyapunov’s inequality for disfocality, J. Math. Anal. Appl. 83 (1981), 486-494.
  • Lasota, A. A discrete boundary value problem, Annal. Polon. Math. 20 (1968), 183-190.
  • Lettenmeyer, F. Ueber die von einem punktausgehenden Integralkurven einer Differentialgleichung 2. Ordnung, Deutsche Math. 7 (1944), 56-74.
  • Lyapunov, A.M. Probleme général de la stabilité du mouvement, Ann. Math. Stud. 17 (1947), 203-474.
  • Mitrinović, D.S., Pečarić, J.E. and Fink, A.M. Classical and New Inequalities in Analysis, vol. 61, Kluwer Academic Publishers, Dordrecht, The Netherlands, (1993).
  • Nehari, Z. On the zeros of solutions of second order linear differential equations, Amer. J. Math. 76 (1954), 689-697.
  • Opial, Z. Sur une inegalite, Annal. Polon. Math. 8 (1960), 29-32.
  • Opial, Z. Sur une inégalité de C. de La Vallée Poussin dans la théorie de l’équation différentielle linéaire du second ordre, Annal. Polon. Math. 6 (1959), 87-91.
  • Poussin, C. de la Vallée Sur l’équation différentielle linéaire du second ordre, J. Math. Pures Appl. 8 (1929), 125-144.
  • Saker, S.H. Applications of Opial inequalities on time scales on dynamic equations with damping terms, Math. Comp. Model. 58 (2013), 1777-1790. 471
  • Saker, S.H. Opial’s type inequalities on time scales and some applications, Annal. Polon. Math. 104 (2012), 243-260.
  • Saker, S.H. New inequalities of Opial’s type on time scales and some of their applications, Disc. Dynam. Nat. Soc. 2012 (2012), 1-23.
  • Saker, S.H. Some New Inequalities of Opial’s Type on Time Scales, Abs. Appl. Anal. 2012 (2012), 1-14.
  • Saker, S.H. Lyapunov inequalities for half-linear dynamic equations on time scales and disconjugacy, Dyn. Contin. Discrete Impuls. Syst. Ser. B, Appl. Algorithms 18 (2011), 149- 161.
  • Saker, S.H. Oscillation Theory of Dynamic Equations on Time Scales: Second and Third Orders, Lambert Academic Publishing, Germany (2010).
  • Saker, S.H. Some new disconjugacy criteria for second order differential equations with a middle term, Bull. Math. Soc. Sci. Math. Roum. 57 (1) (2014), 109-120.
  • Szmanda, B. The distance between the zeros of certain solutions of nth order linear differential equations (Polish), Fasciculi Math. Nr. 4 (1969), 65-70.
  • Tiryaki, A. Recent development of Lyapunov-type inequalities, Adv. Dyn. Syst. Appl. 5 (2) (2010) 231-248.
  • Willett, D. Generalized de la Vallée Poussin disconjugacy tests for linear differential equations, Canad. Math. Bull. 14 (1971), 419-428.
Year 2016, Volume: 45 Issue: 2, 455 - 471, 01.04.2016

Abstract

References

  • Agarwal, R.P. and Pang, P.Y.H. Opial inequalities with Applications in Differential and Difference Equations, Kluwer, Dordrechet (1995).
  • Bohner, M. and Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, Mass, USA (2001).
  • Bohner, M. and Peterson, A., Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston (2003).
  • Bohner, M. and Kaymakçalan, B. Opial Inequalities on time scales, Annal. Polon. Math. 77 (2001), 11-20.
  • Bohner, M., Clark, S. and Ridenhour, J. Lyapunov inequalities for time scales, J. Ineq. Appl. 7 (2002), 61-77.
  • Brown, R.C. and Hinton, D.B. Lyapunov inequalities and their applications, in: T. M. Rassias (Ed.), Survey on Classical Inequalities, Kluwer Academic Publishers, Dordrecht, The Netherlands (2000), 1-25.
  • Brown, R.C. and Hinton, D.B. Opial’s inequality and oscillation of 2 nd order equations, Proc. Amer. Math. Soc. 125 (1997), 1123-1129.
  • Cheng, S. Lyapunov inequalities for differential and difference equations, Fasc. Math. 23 (1991) 25–41.
  • Cohn, J.H.E. Consecutive zeros of solutions of ordinary second order differential equations, J. Lond. Math. Soc. 2 (5) (1972), 465-468.
  • Harris, B. J. and Kong, Q. On the oscillation of differential equations with an oscillatory coefficient, Transc. Amer. Math. Soc. 347 (5) (1995), 1831-1839.
  • Hartman, P. Ordinary Differential Equations, Wiley, New York, (1964) and Birkhäuser, Boston (1982).
  • Hartman, P. and Wintner, A. On an oscillation criterion of de la Vallée Poussin, Quart. Appl. Math. 13 (1955), 330-332.
  • Karpuz, B., Kaymakçalan, B. and Öclan, Ö. A generalization of Opial’s inequality and applications to second order dynamic equations, Diff. Eqns. Dyn. Sys. 18 (2010), 11-18.
  • M. K. Kwong, On Lyapunov’s inequality for disfocality, J. Math. Anal. Appl. 83 (1981), 486-494.
  • Lasota, A. A discrete boundary value problem, Annal. Polon. Math. 20 (1968), 183-190.
  • Lettenmeyer, F. Ueber die von einem punktausgehenden Integralkurven einer Differentialgleichung 2. Ordnung, Deutsche Math. 7 (1944), 56-74.
  • Lyapunov, A.M. Probleme général de la stabilité du mouvement, Ann. Math. Stud. 17 (1947), 203-474.
  • Mitrinović, D.S., Pečarić, J.E. and Fink, A.M. Classical and New Inequalities in Analysis, vol. 61, Kluwer Academic Publishers, Dordrecht, The Netherlands, (1993).
  • Nehari, Z. On the zeros of solutions of second order linear differential equations, Amer. J. Math. 76 (1954), 689-697.
  • Opial, Z. Sur une inegalite, Annal. Polon. Math. 8 (1960), 29-32.
  • Opial, Z. Sur une inégalité de C. de La Vallée Poussin dans la théorie de l’équation différentielle linéaire du second ordre, Annal. Polon. Math. 6 (1959), 87-91.
  • Poussin, C. de la Vallée Sur l’équation différentielle linéaire du second ordre, J. Math. Pures Appl. 8 (1929), 125-144.
  • Saker, S.H. Applications of Opial inequalities on time scales on dynamic equations with damping terms, Math. Comp. Model. 58 (2013), 1777-1790. 471
  • Saker, S.H. Opial’s type inequalities on time scales and some applications, Annal. Polon. Math. 104 (2012), 243-260.
  • Saker, S.H. New inequalities of Opial’s type on time scales and some of their applications, Disc. Dynam. Nat. Soc. 2012 (2012), 1-23.
  • Saker, S.H. Some New Inequalities of Opial’s Type on Time Scales, Abs. Appl. Anal. 2012 (2012), 1-14.
  • Saker, S.H. Lyapunov inequalities for half-linear dynamic equations on time scales and disconjugacy, Dyn. Contin. Discrete Impuls. Syst. Ser. B, Appl. Algorithms 18 (2011), 149- 161.
  • Saker, S.H. Oscillation Theory of Dynamic Equations on Time Scales: Second and Third Orders, Lambert Academic Publishing, Germany (2010).
  • Saker, S.H. Some new disconjugacy criteria for second order differential equations with a middle term, Bull. Math. Soc. Sci. Math. Roum. 57 (1) (2014), 109-120.
  • Szmanda, B. The distance between the zeros of certain solutions of nth order linear differential equations (Polish), Fasciculi Math. Nr. 4 (1969), 65-70.
  • Tiryaki, A. Recent development of Lyapunov-type inequalities, Adv. Dyn. Syst. Appl. 5 (2) (2010) 231-248.
  • Willett, D. Generalized de la Vallée Poussin disconjugacy tests for linear differential equations, Canad. Math. Bull. 14 (1971), 419-428.
There are 32 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Samir. H. Saker This is me

Ramy. R. Mahmoud This is me

Publication Date April 1, 2016
Published in Issue Year 2016 Volume: 45 Issue: 2

Cite

APA H. Saker, S., & Mahmoud, R. R. (2016). Distribution of zeros of sublinear dynamic equations with a damping term on time scales. Hacettepe Journal of Mathematics and Statistics, 45(2), 455-471.
AMA H. Saker S, Mahmoud RR. Distribution of zeros of sublinear dynamic equations with a damping term on time scales. Hacettepe Journal of Mathematics and Statistics. April 2016;45(2):455-471.
Chicago H. Saker, Samir., and Ramy. R. Mahmoud. “Distribution of Zeros of Sublinear Dynamic Equations With a Damping Term on Time Scales”. Hacettepe Journal of Mathematics and Statistics 45, no. 2 (April 2016): 455-71.
EndNote H. Saker S, Mahmoud RR (April 1, 2016) Distribution of zeros of sublinear dynamic equations with a damping term on time scales. Hacettepe Journal of Mathematics and Statistics 45 2 455–471.
IEEE S. H. Saker and R. R. Mahmoud, “Distribution of zeros of sublinear dynamic equations with a damping term on time scales”, Hacettepe Journal of Mathematics and Statistics, vol. 45, no. 2, pp. 455–471, 2016.
ISNAD H. Saker, Samir. - Mahmoud, Ramy. R. “Distribution of Zeros of Sublinear Dynamic Equations With a Damping Term on Time Scales”. Hacettepe Journal of Mathematics and Statistics 45/2 (April 2016), 455-471.
JAMA H. Saker S, Mahmoud RR. Distribution of zeros of sublinear dynamic equations with a damping term on time scales. Hacettepe Journal of Mathematics and Statistics. 2016;45:455–471.
MLA H. Saker, Samir. and Ramy. R. Mahmoud. “Distribution of Zeros of Sublinear Dynamic Equations With a Damping Term on Time Scales”. Hacettepe Journal of Mathematics and Statistics, vol. 45, no. 2, 2016, pp. 455-71.
Vancouver H. Saker S, Mahmoud RR. Distribution of zeros of sublinear dynamic equations with a damping term on time scales. Hacettepe Journal of Mathematics and Statistics. 2016;45(2):455-71.