Distribution of zeros of sublinear dynamic equations with a damping term on time scales
Year 2016,
Volume: 45 Issue: 2, 455 - 471, 01.04.2016
Samir. H. Saker
Ramy. R. Mahmoud
Abstract
In this paper, for a second order sublinear dynamic equation with a
damping term we will study the lower bounds of the distance between
zeros of a solution and/or its derivatives and then establish some new
criteria for disconjugacy and disfocality. Our results present a slight
improvement to some results proved in the litrature. As a special case
when T = R, for a second order linear differential equation, we get some
results proved by Brown and Harris as a consequence of our results. The
results will be proved by employing the time scales Hölder inequality,
the time scales chain rule and some new dynamic Opial-type inequalities
designed and proved for this purpose.
References
- Agarwal, R.P. and Pang, P.Y.H. Opial inequalities with Applications in Differential and
Difference Equations, Kluwer, Dordrechet (1995).
- Bohner, M. and Peterson, A. Dynamic Equations on Time Scales: An Introduction with
Applications, Birkhäuser, Boston, Mass, USA (2001).
- Bohner, M. and Peterson, A., Advances in Dynamic Equations on Time Scales, Birkhäuser,
Boston (2003).
- Bohner, M. and Kaymakçalan, B. Opial Inequalities on time scales, Annal. Polon. Math.
77 (2001), 11-20.
- Bohner, M., Clark, S. and Ridenhour, J. Lyapunov inequalities for time scales, J. Ineq.
Appl. 7 (2002), 61-77.
- Brown, R.C. and Hinton, D.B. Lyapunov inequalities and their applications, in: T. M.
Rassias (Ed.), Survey on Classical Inequalities, Kluwer Academic Publishers, Dordrecht,
The Netherlands (2000), 1-25.
- Brown, R.C. and Hinton, D.B. Opial’s inequality and oscillation of 2
nd order equations,
Proc. Amer. Math. Soc. 125 (1997), 1123-1129.
- Cheng, S. Lyapunov inequalities for differential and difference equations, Fasc. Math. 23
(1991) 25–41.
- Cohn, J.H.E. Consecutive zeros of solutions of ordinary second order differential equations,
J. Lond. Math. Soc. 2 (5) (1972), 465-468.
- Harris, B. J. and Kong, Q. On the oscillation of differential equations with an oscillatory
coefficient, Transc. Amer. Math. Soc. 347 (5) (1995), 1831-1839.
- Hartman, P. Ordinary Differential Equations, Wiley, New York, (1964) and Birkhäuser,
Boston (1982).
- Hartman, P. and Wintner, A. On an oscillation criterion of de la Vallée Poussin, Quart.
Appl. Math. 13 (1955), 330-332.
- Karpuz, B., Kaymakçalan, B. and Öclan, Ö. A generalization of Opial’s inequality and
applications to second order dynamic equations, Diff. Eqns. Dyn. Sys. 18 (2010), 11-18.
- M. K. Kwong, On Lyapunov’s inequality for disfocality, J. Math. Anal. Appl. 83 (1981),
486-494.
- Lasota, A. A discrete boundary value problem, Annal. Polon. Math. 20 (1968), 183-190.
- Lettenmeyer, F. Ueber die von einem punktausgehenden Integralkurven einer Differentialgleichung 2. Ordnung, Deutsche Math. 7 (1944), 56-74.
- Lyapunov, A.M. Probleme général de la stabilité du mouvement, Ann. Math. Stud. 17
(1947), 203-474.
- Mitrinović, D.S., Pečarić, J.E. and Fink, A.M. Classical and New Inequalities in Analysis,
vol. 61, Kluwer Academic Publishers, Dordrecht, The Netherlands, (1993).
- Nehari, Z. On the zeros of solutions of second order linear differential equations, Amer. J.
Math. 76 (1954), 689-697.
- Opial, Z. Sur une inegalite, Annal. Polon. Math. 8 (1960), 29-32.
- Opial, Z. Sur une inégalité de C. de La Vallée Poussin dans la théorie de l’équation différentielle linéaire du second ordre, Annal. Polon. Math. 6 (1959), 87-91.
- Poussin, C. de la Vallée Sur l’équation différentielle linéaire du second ordre, J. Math. Pures
Appl. 8 (1929), 125-144.
- Saker, S.H. Applications of Opial inequalities on time scales on dynamic equations with
damping terms, Math. Comp. Model. 58 (2013), 1777-1790.
471
- Saker, S.H. Opial’s type inequalities on time scales and some applications, Annal. Polon.
Math. 104 (2012), 243-260.
- Saker, S.H. New inequalities of Opial’s type on time scales and some of their applications,
Disc. Dynam. Nat. Soc. 2012 (2012), 1-23.
- Saker, S.H. Some New Inequalities of Opial’s Type on Time Scales, Abs. Appl. Anal. 2012
(2012), 1-14.
- Saker, S.H. Lyapunov inequalities for half-linear dynamic equations on time scales and
disconjugacy, Dyn. Contin. Discrete Impuls. Syst. Ser. B, Appl. Algorithms 18 (2011), 149-
161.
- Saker, S.H. Oscillation Theory of Dynamic Equations on Time Scales: Second and Third
Orders, Lambert Academic Publishing, Germany (2010).
- Saker, S.H. Some new disconjugacy criteria for second order differential equations with a
middle term, Bull. Math. Soc. Sci. Math. Roum. 57 (1) (2014), 109-120.
- Szmanda, B. The distance between the zeros of certain solutions of nth order linear differential equations (Polish), Fasciculi Math. Nr. 4 (1969), 65-70.
- Tiryaki, A. Recent development of Lyapunov-type inequalities, Adv. Dyn. Syst. Appl. 5 (2)
(2010) 231-248.
- Willett, D. Generalized de la Vallée Poussin disconjugacy tests for linear differential equations, Canad. Math. Bull. 14 (1971), 419-428.
Year 2016,
Volume: 45 Issue: 2, 455 - 471, 01.04.2016
Samir. H. Saker
Ramy. R. Mahmoud
References
- Agarwal, R.P. and Pang, P.Y.H. Opial inequalities with Applications in Differential and
Difference Equations, Kluwer, Dordrechet (1995).
- Bohner, M. and Peterson, A. Dynamic Equations on Time Scales: An Introduction with
Applications, Birkhäuser, Boston, Mass, USA (2001).
- Bohner, M. and Peterson, A., Advances in Dynamic Equations on Time Scales, Birkhäuser,
Boston (2003).
- Bohner, M. and Kaymakçalan, B. Opial Inequalities on time scales, Annal. Polon. Math.
77 (2001), 11-20.
- Bohner, M., Clark, S. and Ridenhour, J. Lyapunov inequalities for time scales, J. Ineq.
Appl. 7 (2002), 61-77.
- Brown, R.C. and Hinton, D.B. Lyapunov inequalities and their applications, in: T. M.
Rassias (Ed.), Survey on Classical Inequalities, Kluwer Academic Publishers, Dordrecht,
The Netherlands (2000), 1-25.
- Brown, R.C. and Hinton, D.B. Opial’s inequality and oscillation of 2
nd order equations,
Proc. Amer. Math. Soc. 125 (1997), 1123-1129.
- Cheng, S. Lyapunov inequalities for differential and difference equations, Fasc. Math. 23
(1991) 25–41.
- Cohn, J.H.E. Consecutive zeros of solutions of ordinary second order differential equations,
J. Lond. Math. Soc. 2 (5) (1972), 465-468.
- Harris, B. J. and Kong, Q. On the oscillation of differential equations with an oscillatory
coefficient, Transc. Amer. Math. Soc. 347 (5) (1995), 1831-1839.
- Hartman, P. Ordinary Differential Equations, Wiley, New York, (1964) and Birkhäuser,
Boston (1982).
- Hartman, P. and Wintner, A. On an oscillation criterion of de la Vallée Poussin, Quart.
Appl. Math. 13 (1955), 330-332.
- Karpuz, B., Kaymakçalan, B. and Öclan, Ö. A generalization of Opial’s inequality and
applications to second order dynamic equations, Diff. Eqns. Dyn. Sys. 18 (2010), 11-18.
- M. K. Kwong, On Lyapunov’s inequality for disfocality, J. Math. Anal. Appl. 83 (1981),
486-494.
- Lasota, A. A discrete boundary value problem, Annal. Polon. Math. 20 (1968), 183-190.
- Lettenmeyer, F. Ueber die von einem punktausgehenden Integralkurven einer Differentialgleichung 2. Ordnung, Deutsche Math. 7 (1944), 56-74.
- Lyapunov, A.M. Probleme général de la stabilité du mouvement, Ann. Math. Stud. 17
(1947), 203-474.
- Mitrinović, D.S., Pečarić, J.E. and Fink, A.M. Classical and New Inequalities in Analysis,
vol. 61, Kluwer Academic Publishers, Dordrecht, The Netherlands, (1993).
- Nehari, Z. On the zeros of solutions of second order linear differential equations, Amer. J.
Math. 76 (1954), 689-697.
- Opial, Z. Sur une inegalite, Annal. Polon. Math. 8 (1960), 29-32.
- Opial, Z. Sur une inégalité de C. de La Vallée Poussin dans la théorie de l’équation différentielle linéaire du second ordre, Annal. Polon. Math. 6 (1959), 87-91.
- Poussin, C. de la Vallée Sur l’équation différentielle linéaire du second ordre, J. Math. Pures
Appl. 8 (1929), 125-144.
- Saker, S.H. Applications of Opial inequalities on time scales on dynamic equations with
damping terms, Math. Comp. Model. 58 (2013), 1777-1790.
471
- Saker, S.H. Opial’s type inequalities on time scales and some applications, Annal. Polon.
Math. 104 (2012), 243-260.
- Saker, S.H. New inequalities of Opial’s type on time scales and some of their applications,
Disc. Dynam. Nat. Soc. 2012 (2012), 1-23.
- Saker, S.H. Some New Inequalities of Opial’s Type on Time Scales, Abs. Appl. Anal. 2012
(2012), 1-14.
- Saker, S.H. Lyapunov inequalities for half-linear dynamic equations on time scales and
disconjugacy, Dyn. Contin. Discrete Impuls. Syst. Ser. B, Appl. Algorithms 18 (2011), 149-
161.
- Saker, S.H. Oscillation Theory of Dynamic Equations on Time Scales: Second and Third
Orders, Lambert Academic Publishing, Germany (2010).
- Saker, S.H. Some new disconjugacy criteria for second order differential equations with a
middle term, Bull. Math. Soc. Sci. Math. Roum. 57 (1) (2014), 109-120.
- Szmanda, B. The distance between the zeros of certain solutions of nth order linear differential equations (Polish), Fasciculi Math. Nr. 4 (1969), 65-70.
- Tiryaki, A. Recent development of Lyapunov-type inequalities, Adv. Dyn. Syst. Appl. 5 (2)
(2010) 231-248.
- Willett, D. Generalized de la Vallée Poussin disconjugacy tests for linear differential equations, Canad. Math. Bull. 14 (1971), 419-428.