In this paper we study the properties of bounded linear operators
namely Ap−class and A
∗
p−class operators that satisfy T
∗T ≤ (T
∗pT
p
)
1
p
and T T ∗ ≤ (T
∗pT
p
)
1
p respectively. We use some known operator inequalities and we show that if T ∈ B(H ) is an Ap−class or an A
∗
p−class
operator, then r(T) =k T k .
Eskandari, R., Mirzapour, F., & Rahmatan, H. (2014). On operators of Ap and A∗ p class. Hacettepe Journal of Mathematics and Statistics, 43(5), 741-746.
AMA
Eskandari R, Mirzapour F, Rahmatan H. On operators of Ap and A∗ p class. Hacettepe Journal of Mathematics and Statistics. October 2014;43(5):741-746.
Chicago
Eskandari, R., F. Mirzapour, and H. Rahmatan. “On Operators of Ap and A∗ P Class”. Hacettepe Journal of Mathematics and Statistics 43, no. 5 (October 2014): 741-46.
EndNote
Eskandari R, Mirzapour F, Rahmatan H (October 1, 2014) On operators of Ap and A∗ p class. Hacettepe Journal of Mathematics and Statistics 43 5 741–746.
IEEE
R. Eskandari, F. Mirzapour, and H. Rahmatan, “On operators of Ap and A∗ p class”, Hacettepe Journal of Mathematics and Statistics, vol. 43, no. 5, pp. 741–746, 2014.
ISNAD
Eskandari, R. et al. “On Operators of Ap and A∗ P Class”. Hacettepe Journal of Mathematics and Statistics 43/5 (October 2014), 741-746.
JAMA
Eskandari R, Mirzapour F, Rahmatan H. On operators of Ap and A∗ p class. Hacettepe Journal of Mathematics and Statistics. 2014;43:741–746.
MLA
Eskandari, R. et al. “On Operators of Ap and A∗ P Class”. Hacettepe Journal of Mathematics and Statistics, vol. 43, no. 5, 2014, pp. 741-6.
Vancouver
Eskandari R, Mirzapour F, Rahmatan H. On operators of Ap and A∗ p class. Hacettepe Journal of Mathematics and Statistics. 2014;43(5):741-6.