Research Article
BibTex RIS Cite
Year 2019, Volume: 48 Issue: 2, 427 - 438, 01.04.2019

Abstract

References

  • H. Bağdatlı Yılmaz, On decomposable almost pseudo conharmonically symmetric manifolds, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 51 (1), 111- 124, 2012.
  • H. Bağdatlı Yılmaz, On Almost Pseudo Quasi-Conformally Symmetric Manifolds, pre-print.
  • K.K. Baishya, On generalized weakly symmetric manifolds, Bull. Transilv. Univ. Braÿsov Ser. III 10 (59), 31-38, 2017.
  • K.K. Baishya, On generalized semi-pseudo symmetric manifold, submitted.
  • K.K. Baishya and P.R. Chowdhury, $\eta$-Ricci solitons in $(LCS)_{n}$-manifolds, Bull. Transilv. Univ. Braÿsov Ser. III 9 (58), 1-12, 2016.
  • K.K. Baishya, P.R. Chowdhury, M. Josef and P. Peska, On almost generalized weakly symmetric Kenmotsu manifolds, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 55 (2), 5-15, 2016.
  • E. Cartan, Sur une classes remarquable d’espaces de Riemannian, Bull. Soc. Math. France 54, 214-264, 1926.
  • M.C. Chaki, On pseudo symmetric manifolds, Analele Ştiinţifice Ale Univer˘siţatii "AL I.Cuza’" Din Iaşi 33, 53-58, 1987.
  • M.C. Chaki and T. Kawaguchi, On almost pseudo Ricci symmetric manifolds, Tensor 68 (1), 10-14, 2007.
  • U.C. De and S. Bandyopadhyay, On weakly symmetric spaces, Acta Math. Hung. 83, 205-212, 2000.
  • R.S.D. Dubey, Generalized recurrent spaces, Indian J. Pure Appl. Math. 10 (12), 1508-1513, 1979.
  • S.K. Hui and M. Atceken, Contact warped productsemi-slant submanifolds of $(LCS)_{n}$- manifolds, Acta Univ. Sapientiae Mathematica 3 (2), 212-224, 2011.
  • J.P. Jaiswal and R.H. Ojha, On weakly pseudo-projectively symmetric manifolds, Differential Geometry - Dynamical Systems 12, 83-94, 2010.
  • F. Malek and M. Samawaki, On weakly symmetric Riemannian manifolds, Differential Geometry - Dynamical Systems, 10, 215-220, 2008.
  • C.A. Mantica and L.G. Molinari, Weakly Z-symmetric manifolds, Acta Math. Hungar. 135, 80-96, 2012.
  • C.A. Mantica and L.G. Molinari, Twisted Lorentzian manifolds: a characterization with torse-forming time-like unit vectors, Gen. Relativ. Gravit. 49:51, 2017.
  • C.A. Mantica and L.G. Molinari, Generalized Robertson-Walker space-times, a survey, Int. J. Geom. Meth. Mod.Phys. 14 (3), 1730001, 2017.
  • C.A. Mantica and Y.J. Suh, Pseudo Z-symmetric Riemannian manifolds with harmonic curvature tensors, Int. J. Geom. Meth. Mod. Phys. 9, 1250004, 2012.
  • D. Narain and S. Yadav, On weak concircular symmetries of $(LCS)_{2n+1} $-manifolds, Global Journal of Science Frontier Research 12, 85-94, 2012.
  • B. O’Neill, Semi-Riemannian Geometry, Academic Press, Inc, New York, 1983.
  • F. Özen and S. Altay, On weakly and pseudo symmetric Riemannian spaces, Indian J. Pure Appl. Math. 33 (10), 1477-1488, 2001.
  • F. Özen and S. Altay, On weakly and pseudo concircular symmetric structures on a Riemannian manifold, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 47, 129-138, 2008.
  • M. Prvanovic, On weakly symmetric riemannian manifolds, Pub. Math. Debrecen 46, 19-25, 1995.
  • M. Prvanovic, On totally umbilical submanifolds immersed in a weakly symmetric riemannian manifolds, Pub. Math. Debrecen 6, 54-64, 1998.
  • A.A. Shaikh, On Lorentzian almost para contact manifolds with a structure of the concircular type, Kyungpook Math. J. 43, 305-314 ,2003.
  • A.A. Shaikh and K.K. Baishya, On weakly quasi-conformally symmetric manifolds, Soochow J. Math. 31 (4), 581-595, 2005.
  • A.A. Shaikh and K.K. Baishya, On concircular structure spacetimes, J. Math. Stat. 1, 129-132, 2005.
  • A.A. Shaikh and K.K. Baishya, On concircular structurespacetimes II, American J. Appl. Sci. 3, 1790-1794, 2006.
  • A.A. Shaikh and T.Q. Binh, On weakly symmetric $(LCS)_{n}$-manifolds, J. Adv. Math. Studies 2, 75-90, 2009.
  • A.A. Shaikh and S.K. Hui, On generalized $\phi$-recurrent $(LCS)_{n}$-manifolds, AIP Conference Proceedings 1309, 419-429, 2010.
  • A.A. Shaikh and S.K. Jana, On weakly symmetric manifolds, Publ. Math. Debrecen 71 (1-2), 2007.
  • A.A. Shaikh, I. Roy and S.K. Hui, On totally umbilical hypersurfaces of weakly conharmonically symmetric spaces, Global Journal of Science Frontier Research 10 (4), 28-31, 2010.
  • G.T. Sreenivasa, Venkatesha and C.S. Bagewadi, Some results on $(LCS)_{2n+1}$-manifolds, Bull. Math. Anal. Appl. 3 (1), 64-70, 2009.
  • L. Tamássy and T.Q. Binh, On weakly symmetric and weakly projective symmetric Riemannian manifolds, Colloq. Math. Soc. János Bolyai 56, 663-670, 1989.
  • M. Tarafdar and M.A.A. Jawarneh, Semi-Pseudo Ricci Symmetric manifold, J. Indian. Inst. Sci. 73, 591-596, 1993.
  • A.G. Walker, On Ruse’s space of recurrent curvature, Proc. London Math. Soc. 52, 36-54, 1950.
  • K. Yano and M. Kon, Structures on manifolds, Series in Pure Mathematics 3, World Scientific Publishing, 1985.

On generalized weakly symmetric $(LCS)_{n}$-manifolds

Year 2019, Volume: 48 Issue: 2, 427 - 438, 01.04.2019

Abstract

The object of the present paper is to study generalized weakly symmetric and weakly Ricci symmetric $(LCS)_{n}$-manifolds. Our aim is to bring out different type of curvature restrictions for which $(LCS)_{n}$-manifolds are sometimes Einstein and some other time remain $\eta $-Einstein. Finally, the existence of such manifold is ensured by a non-trivial example.

References

  • H. Bağdatlı Yılmaz, On decomposable almost pseudo conharmonically symmetric manifolds, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 51 (1), 111- 124, 2012.
  • H. Bağdatlı Yılmaz, On Almost Pseudo Quasi-Conformally Symmetric Manifolds, pre-print.
  • K.K. Baishya, On generalized weakly symmetric manifolds, Bull. Transilv. Univ. Braÿsov Ser. III 10 (59), 31-38, 2017.
  • K.K. Baishya, On generalized semi-pseudo symmetric manifold, submitted.
  • K.K. Baishya and P.R. Chowdhury, $\eta$-Ricci solitons in $(LCS)_{n}$-manifolds, Bull. Transilv. Univ. Braÿsov Ser. III 9 (58), 1-12, 2016.
  • K.K. Baishya, P.R. Chowdhury, M. Josef and P. Peska, On almost generalized weakly symmetric Kenmotsu manifolds, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 55 (2), 5-15, 2016.
  • E. Cartan, Sur une classes remarquable d’espaces de Riemannian, Bull. Soc. Math. France 54, 214-264, 1926.
  • M.C. Chaki, On pseudo symmetric manifolds, Analele Ştiinţifice Ale Univer˘siţatii "AL I.Cuza’" Din Iaşi 33, 53-58, 1987.
  • M.C. Chaki and T. Kawaguchi, On almost pseudo Ricci symmetric manifolds, Tensor 68 (1), 10-14, 2007.
  • U.C. De and S. Bandyopadhyay, On weakly symmetric spaces, Acta Math. Hung. 83, 205-212, 2000.
  • R.S.D. Dubey, Generalized recurrent spaces, Indian J. Pure Appl. Math. 10 (12), 1508-1513, 1979.
  • S.K. Hui and M. Atceken, Contact warped productsemi-slant submanifolds of $(LCS)_{n}$- manifolds, Acta Univ. Sapientiae Mathematica 3 (2), 212-224, 2011.
  • J.P. Jaiswal and R.H. Ojha, On weakly pseudo-projectively symmetric manifolds, Differential Geometry - Dynamical Systems 12, 83-94, 2010.
  • F. Malek and M. Samawaki, On weakly symmetric Riemannian manifolds, Differential Geometry - Dynamical Systems, 10, 215-220, 2008.
  • C.A. Mantica and L.G. Molinari, Weakly Z-symmetric manifolds, Acta Math. Hungar. 135, 80-96, 2012.
  • C.A. Mantica and L.G. Molinari, Twisted Lorentzian manifolds: a characterization with torse-forming time-like unit vectors, Gen. Relativ. Gravit. 49:51, 2017.
  • C.A. Mantica and L.G. Molinari, Generalized Robertson-Walker space-times, a survey, Int. J. Geom. Meth. Mod.Phys. 14 (3), 1730001, 2017.
  • C.A. Mantica and Y.J. Suh, Pseudo Z-symmetric Riemannian manifolds with harmonic curvature tensors, Int. J. Geom. Meth. Mod. Phys. 9, 1250004, 2012.
  • D. Narain and S. Yadav, On weak concircular symmetries of $(LCS)_{2n+1} $-manifolds, Global Journal of Science Frontier Research 12, 85-94, 2012.
  • B. O’Neill, Semi-Riemannian Geometry, Academic Press, Inc, New York, 1983.
  • F. Özen and S. Altay, On weakly and pseudo symmetric Riemannian spaces, Indian J. Pure Appl. Math. 33 (10), 1477-1488, 2001.
  • F. Özen and S. Altay, On weakly and pseudo concircular symmetric structures on a Riemannian manifold, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 47, 129-138, 2008.
  • M. Prvanovic, On weakly symmetric riemannian manifolds, Pub. Math. Debrecen 46, 19-25, 1995.
  • M. Prvanovic, On totally umbilical submanifolds immersed in a weakly symmetric riemannian manifolds, Pub. Math. Debrecen 6, 54-64, 1998.
  • A.A. Shaikh, On Lorentzian almost para contact manifolds with a structure of the concircular type, Kyungpook Math. J. 43, 305-314 ,2003.
  • A.A. Shaikh and K.K. Baishya, On weakly quasi-conformally symmetric manifolds, Soochow J. Math. 31 (4), 581-595, 2005.
  • A.A. Shaikh and K.K. Baishya, On concircular structure spacetimes, J. Math. Stat. 1, 129-132, 2005.
  • A.A. Shaikh and K.K. Baishya, On concircular structurespacetimes II, American J. Appl. Sci. 3, 1790-1794, 2006.
  • A.A. Shaikh and T.Q. Binh, On weakly symmetric $(LCS)_{n}$-manifolds, J. Adv. Math. Studies 2, 75-90, 2009.
  • A.A. Shaikh and S.K. Hui, On generalized $\phi$-recurrent $(LCS)_{n}$-manifolds, AIP Conference Proceedings 1309, 419-429, 2010.
  • A.A. Shaikh and S.K. Jana, On weakly symmetric manifolds, Publ. Math. Debrecen 71 (1-2), 2007.
  • A.A. Shaikh, I. Roy and S.K. Hui, On totally umbilical hypersurfaces of weakly conharmonically symmetric spaces, Global Journal of Science Frontier Research 10 (4), 28-31, 2010.
  • G.T. Sreenivasa, Venkatesha and C.S. Bagewadi, Some results on $(LCS)_{2n+1}$-manifolds, Bull. Math. Anal. Appl. 3 (1), 64-70, 2009.
  • L. Tamássy and T.Q. Binh, On weakly symmetric and weakly projective symmetric Riemannian manifolds, Colloq. Math. Soc. János Bolyai 56, 663-670, 1989.
  • M. Tarafdar and M.A.A. Jawarneh, Semi-Pseudo Ricci Symmetric manifold, J. Indian. Inst. Sci. 73, 591-596, 1993.
  • A.G. Walker, On Ruse’s space of recurrent curvature, Proc. London Math. Soc. 52, 36-54, 1950.
  • K. Yano and M. Kon, Structures on manifolds, Series in Pure Mathematics 3, World Scientific Publishing, 1985.
There are 37 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Kanak Kanti Baishya

Publication Date April 1, 2019
Published in Issue Year 2019 Volume: 48 Issue: 2

Cite

APA Baishya, K. K. (2019). On generalized weakly symmetric $(LCS)_{n}$-manifolds. Hacettepe Journal of Mathematics and Statistics, 48(2), 427-438.
AMA Baishya KK. On generalized weakly symmetric $(LCS)_{n}$-manifolds. Hacettepe Journal of Mathematics and Statistics. April 2019;48(2):427-438.
Chicago Baishya, Kanak Kanti. “On Generalized Weakly Symmetric $(LCS)_{n}$-Manifolds”. Hacettepe Journal of Mathematics and Statistics 48, no. 2 (April 2019): 427-38.
EndNote Baishya KK (April 1, 2019) On generalized weakly symmetric $(LCS)_{n}$-manifolds. Hacettepe Journal of Mathematics and Statistics 48 2 427–438.
IEEE K. K. Baishya, “On generalized weakly symmetric $(LCS)_{n}$-manifolds”, Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 2, pp. 427–438, 2019.
ISNAD Baishya, Kanak Kanti. “On Generalized Weakly Symmetric $(LCS)_{n}$-Manifolds”. Hacettepe Journal of Mathematics and Statistics 48/2 (April 2019), 427-438.
JAMA Baishya KK. On generalized weakly symmetric $(LCS)_{n}$-manifolds. Hacettepe Journal of Mathematics and Statistics. 2019;48:427–438.
MLA Baishya, Kanak Kanti. “On Generalized Weakly Symmetric $(LCS)_{n}$-Manifolds”. Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 2, 2019, pp. 427-38.
Vancouver Baishya KK. On generalized weakly symmetric $(LCS)_{n}$-manifolds. Hacettepe Journal of Mathematics and Statistics. 2019;48(2):427-38.