Research Article
BibTex RIS Cite
Year 2019, Volume: 48 Issue: 2, 479 - 489, 01.04.2019

Abstract

References

  • U.F. Albrecht, H.-P. Goeters and W. Wickless, The flat dimension of mixed abelian groups as E-modules, Rocky Mountain J. Math. 25, 569-590, 1995.
  • A.R. Chekhlov and P.V. Danchev, A generalization of Hopfian abelian groups, Annal. Univ. Sci. Budap. (Math.) 60, 93-109, 2017.
  • A.R. Chekhlov and P.V. Danchev, A generalization of co-Hopfian abelian groups, Internat. J. Algebra Comput. 27, 351-360, 2017.
  • L. Fuchs, Infinite Abelian Groups, volumes I and II, Acad. Press, London, 1970 and 1973.
  • L. Fuchs, Abelian Groups, Springer, Switzerland, 2015.
  • B. Goldsmith and K. Gong, A note on Hopfian and co-Hopfian abelian groups, Con- temp. Math. 576, 129-136, 2012.
  • E.V. Kaigarodov, Some classes of Hopfian abelian groups, Fund. Prikl. Mat. 17, 59- 61, 2012.
  • E.V. Kaigorodov, On two classes of Hopfian abelian groups, Vest. Tomsk University (Math. and Mech.) 22, 22-32, 2013.
  • E.V. Kaigorodov and P.A. Krylov, On some classes of Hopfian abelian groups and modules, Fundam. Prikl. Math. 20, 61-68, 2015.
  • P.A. Krylov, A.V. Mikhalev and A.A. Tuganbaev, Endomorphism Rings of Abelian Groups, Kluwer Academic Publishers, Dordrecht, 2003.
  • P.A. Krylov and A.A. Tuganbaev, Modules over formal matrix rings, J. Math. Sci. 171, 248-295, 2010.

$n$-Hopfian and $n$-co-Hopfian Abelian Groups

Year 2019, Volume: 48 Issue: 2, 479 - 489, 01.04.2019

Abstract

For any natural number $n$ we define and study the two notions of $n$-Hopfian and $n$-co-Hopfian abelian groups. These groups form proper subclasses of the classes of Hopfian and co-Hopfian groups, respectively, and some of their exotic properties are established as well. We also consider and investigate $\omega$-Hopfian and $\omega$-co-Hopfian modules over the formal matrix ring.

References

  • U.F. Albrecht, H.-P. Goeters and W. Wickless, The flat dimension of mixed abelian groups as E-modules, Rocky Mountain J. Math. 25, 569-590, 1995.
  • A.R. Chekhlov and P.V. Danchev, A generalization of Hopfian abelian groups, Annal. Univ. Sci. Budap. (Math.) 60, 93-109, 2017.
  • A.R. Chekhlov and P.V. Danchev, A generalization of co-Hopfian abelian groups, Internat. J. Algebra Comput. 27, 351-360, 2017.
  • L. Fuchs, Infinite Abelian Groups, volumes I and II, Acad. Press, London, 1970 and 1973.
  • L. Fuchs, Abelian Groups, Springer, Switzerland, 2015.
  • B. Goldsmith and K. Gong, A note on Hopfian and co-Hopfian abelian groups, Con- temp. Math. 576, 129-136, 2012.
  • E.V. Kaigarodov, Some classes of Hopfian abelian groups, Fund. Prikl. Mat. 17, 59- 61, 2012.
  • E.V. Kaigorodov, On two classes of Hopfian abelian groups, Vest. Tomsk University (Math. and Mech.) 22, 22-32, 2013.
  • E.V. Kaigorodov and P.A. Krylov, On some classes of Hopfian abelian groups and modules, Fundam. Prikl. Math. 20, 61-68, 2015.
  • P.A. Krylov, A.V. Mikhalev and A.A. Tuganbaev, Endomorphism Rings of Abelian Groups, Kluwer Academic Publishers, Dordrecht, 2003.
  • P.A. Krylov and A.A. Tuganbaev, Modules over formal matrix rings, J. Math. Sci. 171, 248-295, 2010.
There are 11 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Andrey Chekhlov This is me 0000-0002-9078-128X

Peter Danchev This is me 0000-0002-2016-2336

Publication Date April 1, 2019
Published in Issue Year 2019 Volume: 48 Issue: 2

Cite

APA Chekhlov, A., & Danchev, P. (2019). $n$-Hopfian and $n$-co-Hopfian Abelian Groups. Hacettepe Journal of Mathematics and Statistics, 48(2), 479-489.
AMA Chekhlov A, Danchev P. $n$-Hopfian and $n$-co-Hopfian Abelian Groups. Hacettepe Journal of Mathematics and Statistics. April 2019;48(2):479-489.
Chicago Chekhlov, Andrey, and Peter Danchev. “$n$-Hopfian and $n$-Co-Hopfian Abelian Groups”. Hacettepe Journal of Mathematics and Statistics 48, no. 2 (April 2019): 479-89.
EndNote Chekhlov A, Danchev P (April 1, 2019) $n$-Hopfian and $n$-co-Hopfian Abelian Groups. Hacettepe Journal of Mathematics and Statistics 48 2 479–489.
IEEE A. Chekhlov and P. Danchev, “$n$-Hopfian and $n$-co-Hopfian Abelian Groups”, Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 2, pp. 479–489, 2019.
ISNAD Chekhlov, Andrey - Danchev, Peter. “$n$-Hopfian and $n$-Co-Hopfian Abelian Groups”. Hacettepe Journal of Mathematics and Statistics 48/2 (April 2019), 479-489.
JAMA Chekhlov A, Danchev P. $n$-Hopfian and $n$-co-Hopfian Abelian Groups. Hacettepe Journal of Mathematics and Statistics. 2019;48:479–489.
MLA Chekhlov, Andrey and Peter Danchev. “$n$-Hopfian and $n$-Co-Hopfian Abelian Groups”. Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 2, 2019, pp. 479-8.
Vancouver Chekhlov A, Danchev P. $n$-Hopfian and $n$-co-Hopfian Abelian Groups. Hacettepe Journal of Mathematics and Statistics. 2019;48(2):479-8.