Research Article
BibTex RIS Cite
Year 2019, Volume: 48 Issue: 3, 633 - 643, 15.06.2019

Abstract

References

  • B. Baculíková and J. Džurina,Oscillation theorems for second order neutral differential equations, Comput. Math. Appl. 61 (1), 94-99, 2011.
  • B. Baculíková and J. Džurina, Oscillation theorems for second-order nonlinear neutral differential equations, Comput. Math. Appl. 62 (12), 4472-4478, 2011.
  • B. Baculíková, T.X. Li and J. Džurina, Oscillation theorems for second order neutral differential equations, Electron. J. Qual. Theory Differ. Equ. 2011 (74), 1-13, 2011.
  • B. Baculíková, T.X. Li and J. Džurina, Oscillation theorems for second-order super- linear neutral differential equations, Math. Slovaca, 63 (1), 123-134, 2013.
  • J. Džurina, Oscillation theorems for second order advanced neutral differential equa- tions, Tatra Mt. Math. Publ. 48, 61-71, 2011.
  • I. Győri and G. Ladas, Oscillation Theory of Delay Differential Equations with Ap- plications, Oxford, Clarendon Press, 1991.
  • J. Hale, Theory of Functional Differential Equations, New York, Springer-Verlag, 1977.
  • M. Hasanbulli and Y.V. Rogovchenko, Oscillation criteria for second order nonlinear neutral differential equations, Appl. Math. Comput. 215 (12), 4392-4399, 2010.
  • T.H. Hildebrandt, Introduction to the Theory of Integration, New York, Academic Press, 1963.
  • B. Karpuz, Ö. Öcalan and S. Öztürk, Comparison theorems on the oscillation and asymptotic behaviour of higher-order neutral differential equations, Glasg. Math. J. 52 (1), 107-114, 2010.
  • B. Karpuz, L.N. Padhy and R.N. Rath, Oscillation and asymptotic behaviour of a higher order neutral differential equation with positive and negative coefficients, Elec- tron. J. Differ. Equ. 113, 15 pp., 2008.
  • T.X. Li and Y.V. Rogovchenko, Oscillation theorems for second-order nonlinear neu- tral delay differential equations Abstr. Appl. Anal. Article ID: 594190, 1-5, 2014.
  • T.X. Li, Y.V. Rogovchenko and C.H. Zhang, Oscillation results for second-order non- linear neutral differential equations, Adv. Difference Equ. 336, 13 pp., 2013.
  • Y.J. Liu, J.W. Zhang and J. Yan, Existence of oscillatory solutions of second order delay differential equations, J. Comput. Appl. Math. 277, 17-22, 2015.
  • S.S. Santra, Existence of positive solution and new oscillation criteria for nonlinear first-order neutral delay differential equations, Differ. Equ. Appl. 8 (1), 33-51, 2016.
  • S. Sun, T.X. Li, Z.L. Han and C. Zhang, On oscillation of second-order nonlinear neutral functional differential equations, Bull. Malays. Math. Sci. Soc. (2), 36 (3), 541-554, 2013.
  • J. Yan, Existence of oscillatory solutions of forced second order delay differential equations, Appl. Math. Lett. 24 (8), 1455-1460, 2011.

Oscillation theorems for second-order nonlinear delay differential equations of neutral type

Year 2019, Volume: 48 Issue: 3, 633 - 643, 15.06.2019

Abstract

In this paper, new sufficient conditions are obtained for oscillation of second-order neutral delay differential equations of the form
\[\frac{d}{dt}\bigg[r(t)\frac{d}{dt}[x(t)+p(t)x(\tau(t))]\bigg]+q(t)G\bigl(x(\sigma(t))\bigr)=0\: for\: t\geq t_{0},\]
under the assumptions $\int^{\infty}\frac{1}{r(\eta)}d\eta=\infty$ and $\int^{\infty}\frac{1}{r(\eta)}d\eta<\infty$ for various ranges of the bounded neutral coefficient $p$. Unlike most of the previous results, $\tau^{\prime}$ is allowed to be oscillatory. Further, some illustrative examples showing applicability of the new results are included.

References

  • B. Baculíková and J. Džurina,Oscillation theorems for second order neutral differential equations, Comput. Math. Appl. 61 (1), 94-99, 2011.
  • B. Baculíková and J. Džurina, Oscillation theorems for second-order nonlinear neutral differential equations, Comput. Math. Appl. 62 (12), 4472-4478, 2011.
  • B. Baculíková, T.X. Li and J. Džurina, Oscillation theorems for second order neutral differential equations, Electron. J. Qual. Theory Differ. Equ. 2011 (74), 1-13, 2011.
  • B. Baculíková, T.X. Li and J. Džurina, Oscillation theorems for second-order super- linear neutral differential equations, Math. Slovaca, 63 (1), 123-134, 2013.
  • J. Džurina, Oscillation theorems for second order advanced neutral differential equa- tions, Tatra Mt. Math. Publ. 48, 61-71, 2011.
  • I. Győri and G. Ladas, Oscillation Theory of Delay Differential Equations with Ap- plications, Oxford, Clarendon Press, 1991.
  • J. Hale, Theory of Functional Differential Equations, New York, Springer-Verlag, 1977.
  • M. Hasanbulli and Y.V. Rogovchenko, Oscillation criteria for second order nonlinear neutral differential equations, Appl. Math. Comput. 215 (12), 4392-4399, 2010.
  • T.H. Hildebrandt, Introduction to the Theory of Integration, New York, Academic Press, 1963.
  • B. Karpuz, Ö. Öcalan and S. Öztürk, Comparison theorems on the oscillation and asymptotic behaviour of higher-order neutral differential equations, Glasg. Math. J. 52 (1), 107-114, 2010.
  • B. Karpuz, L.N. Padhy and R.N. Rath, Oscillation and asymptotic behaviour of a higher order neutral differential equation with positive and negative coefficients, Elec- tron. J. Differ. Equ. 113, 15 pp., 2008.
  • T.X. Li and Y.V. Rogovchenko, Oscillation theorems for second-order nonlinear neu- tral delay differential equations Abstr. Appl. Anal. Article ID: 594190, 1-5, 2014.
  • T.X. Li, Y.V. Rogovchenko and C.H. Zhang, Oscillation results for second-order non- linear neutral differential equations, Adv. Difference Equ. 336, 13 pp., 2013.
  • Y.J. Liu, J.W. Zhang and J. Yan, Existence of oscillatory solutions of second order delay differential equations, J. Comput. Appl. Math. 277, 17-22, 2015.
  • S.S. Santra, Existence of positive solution and new oscillation criteria for nonlinear first-order neutral delay differential equations, Differ. Equ. Appl. 8 (1), 33-51, 2016.
  • S. Sun, T.X. Li, Z.L. Han and C. Zhang, On oscillation of second-order nonlinear neutral functional differential equations, Bull. Malays. Math. Sci. Soc. (2), 36 (3), 541-554, 2013.
  • J. Yan, Existence of oscillatory solutions of forced second order delay differential equations, Appl. Math. Lett. 24 (8), 1455-1460, 2011.
There are 17 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Başak Karpuz 0000-0002-0242-972X

Shyam S. Santra 0000-0001-9740-3081

Publication Date June 15, 2019
Published in Issue Year 2019 Volume: 48 Issue: 3

Cite

APA Karpuz, B., & Santra, S. S. (2019). Oscillation theorems for second-order nonlinear delay differential equations of neutral type. Hacettepe Journal of Mathematics and Statistics, 48(3), 633-643.
AMA Karpuz B, Santra SS. Oscillation theorems for second-order nonlinear delay differential equations of neutral type. Hacettepe Journal of Mathematics and Statistics. June 2019;48(3):633-643.
Chicago Karpuz, Başak, and Shyam S. Santra. “Oscillation Theorems for Second-Order Nonlinear Delay Differential Equations of Neutral Type”. Hacettepe Journal of Mathematics and Statistics 48, no. 3 (June 2019): 633-43.
EndNote Karpuz B, Santra SS (June 1, 2019) Oscillation theorems for second-order nonlinear delay differential equations of neutral type. Hacettepe Journal of Mathematics and Statistics 48 3 633–643.
IEEE B. Karpuz and S. S. Santra, “Oscillation theorems for second-order nonlinear delay differential equations of neutral type”, Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 3, pp. 633–643, 2019.
ISNAD Karpuz, Başak - Santra, Shyam S. “Oscillation Theorems for Second-Order Nonlinear Delay Differential Equations of Neutral Type”. Hacettepe Journal of Mathematics and Statistics 48/3 (June 2019), 633-643.
JAMA Karpuz B, Santra SS. Oscillation theorems for second-order nonlinear delay differential equations of neutral type. Hacettepe Journal of Mathematics and Statistics. 2019;48:633–643.
MLA Karpuz, Başak and Shyam S. Santra. “Oscillation Theorems for Second-Order Nonlinear Delay Differential Equations of Neutral Type”. Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 3, 2019, pp. 633-4.
Vancouver Karpuz B, Santra SS. Oscillation theorems for second-order nonlinear delay differential equations of neutral type. Hacettepe Journal of Mathematics and Statistics. 2019;48(3):633-4.