Research Article
BibTex RIS Cite
Year 2019, Volume: 48 Issue: 3, 682 - 688, 15.06.2019

Abstract

References

  • T. Adrian and J. Rosenberg, Stock returns and volatility: pricing the short-run and long-run components of market risk, J. Finance, 63, 2997–3030, 2008.
  • Y. Aït-Sahalia, Maximum likelihood estimation of discretely sampled diffusions: a closed-form approximation approach, Econometrica, 70, 223–262, 2002.
  • F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Political Econ. 81, 637–654, 1973.
  • M. Chernov, A.R. Gallant, E. Ghysels and G. Tauchne, Alternative models for stock price dynamics, J. Econometrics, 73, 225–257, 2003.
  • J.C. Cox, J.E. Ingersoll and S.A. Ross, A theory of the term structure of interest rates, Econometrica, 53, 385–408, 1985.
  • J.-P. Fouque and X. Zhou, Perturbed Gaussian Copula, Adv. Econom. 22, 103–121, 2008.
  • J.-P. Fouqu, G. Papanicolaou, R. Sircar and K. Sølna, Multiscale stochastic volatility asymptotics, Multiscale Model. Simul 2, 22–42, 2003.
  • A.R. Gallant, C.-T. Hsu and G. Tauchen, Using daily range data to calibrate volatility diffusions and extract the forward integrated variance, Rev. Econ. Stat. 81, 617–631, 1999.
  • J.-H. Kim, Y.-K. Ma and C.Y. Park, Joint survival probability via truncated invariant copula, Chaos Solitons Fractals, 85, 68–76, 2016.
  • Y.-K. Ma and J.-H. Kim, Pricing the credit default swap rate for jump diffusion default intensity processes, Quant. Finance, 10, 809–817, 2010.
  • O. Vasicek, An equilibrium characterization of the term structure, J. Financial Econ. 5, 177–188, 1977.

Analytic approximation of the transition density function under a multi-scale volatility model

Year 2019, Volume: 48 Issue: 3, 682 - 688, 15.06.2019

Abstract

The transition density function plays an important role in understanding and explaining the dynamics of the stochastic process. We propose an approach which can be used for the analytic approximation of the transition density related to a multi-scale stochastic volatility model. Using perturbation theory, we compute the leading-order term and the first-order correction terms. A numerical test also confirms the effectiveness of the model.

References

  • T. Adrian and J. Rosenberg, Stock returns and volatility: pricing the short-run and long-run components of market risk, J. Finance, 63, 2997–3030, 2008.
  • Y. Aït-Sahalia, Maximum likelihood estimation of discretely sampled diffusions: a closed-form approximation approach, Econometrica, 70, 223–262, 2002.
  • F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Political Econ. 81, 637–654, 1973.
  • M. Chernov, A.R. Gallant, E. Ghysels and G. Tauchne, Alternative models for stock price dynamics, J. Econometrics, 73, 225–257, 2003.
  • J.C. Cox, J.E. Ingersoll and S.A. Ross, A theory of the term structure of interest rates, Econometrica, 53, 385–408, 1985.
  • J.-P. Fouque and X. Zhou, Perturbed Gaussian Copula, Adv. Econom. 22, 103–121, 2008.
  • J.-P. Fouqu, G. Papanicolaou, R. Sircar and K. Sølna, Multiscale stochastic volatility asymptotics, Multiscale Model. Simul 2, 22–42, 2003.
  • A.R. Gallant, C.-T. Hsu and G. Tauchen, Using daily range data to calibrate volatility diffusions and extract the forward integrated variance, Rev. Econ. Stat. 81, 617–631, 1999.
  • J.-H. Kim, Y.-K. Ma and C.Y. Park, Joint survival probability via truncated invariant copula, Chaos Solitons Fractals, 85, 68–76, 2016.
  • Y.-K. Ma and J.-H. Kim, Pricing the credit default swap rate for jump diffusion default intensity processes, Quant. Finance, 10, 809–817, 2010.
  • O. Vasicek, An equilibrium characterization of the term structure, J. Financial Econ. 5, 177–188, 1977.
There are 11 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Yong-ki Ma 0000-0002-4590-763X

Publication Date June 15, 2019
Published in Issue Year 2019 Volume: 48 Issue: 3

Cite

APA Ma, Y.-k. (2019). Analytic approximation of the transition density function under a multi-scale volatility model. Hacettepe Journal of Mathematics and Statistics, 48(3), 682-688.
AMA Ma Yk. Analytic approximation of the transition density function under a multi-scale volatility model. Hacettepe Journal of Mathematics and Statistics. June 2019;48(3):682-688.
Chicago Ma, Yong-ki. “Analytic Approximation of the Transition Density Function under a Multi-Scale Volatility Model”. Hacettepe Journal of Mathematics and Statistics 48, no. 3 (June 2019): 682-88.
EndNote Ma Y-k (June 1, 2019) Analytic approximation of the transition density function under a multi-scale volatility model. Hacettepe Journal of Mathematics and Statistics 48 3 682–688.
IEEE Y.-k. Ma, “Analytic approximation of the transition density function under a multi-scale volatility model”, Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 3, pp. 682–688, 2019.
ISNAD Ma, Yong-ki. “Analytic Approximation of the Transition Density Function under a Multi-Scale Volatility Model”. Hacettepe Journal of Mathematics and Statistics 48/3 (June 2019), 682-688.
JAMA Ma Y-k. Analytic approximation of the transition density function under a multi-scale volatility model. Hacettepe Journal of Mathematics and Statistics. 2019;48:682–688.
MLA Ma, Yong-ki. “Analytic Approximation of the Transition Density Function under a Multi-Scale Volatility Model”. Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 3, 2019, pp. 682-8.
Vancouver Ma Y-k. Analytic approximation of the transition density function under a multi-scale volatility model. Hacettepe Journal of Mathematics and Statistics. 2019;48(3):682-8.