Research Article
BibTex RIS Cite
Year 2019, Volume: 48 Issue: 3, 759 - 770, 15.06.2019

Abstract

References

  • Y.A. Abramovich and A.W. Wickstead, Recent results on the order structure of com- pact operators, Irish Math. Soc. Bulletin 32, 34-45, 1994.
  • C.D. Aliprantis and O. Burkinshaw, Positive operators (Reprint of the 1985 original), Springer, Dordrecht, 2006.
  • B. Aqzzouz and K. Bouras, (L) sets and almost (L) set in Banach lattices, Quaest. Math. 36, 107-118, 2013.
  • B. Aqzzouz, A. Elbour and A.W. Wickstead, Positive almost Dunford-Pettis operators and their duality, Positivity 15, 185-197, 2011.
  • J. Bourgain and J. Diestel, Limited operators and strict cosingularity, Math. Nachr. 119, 55-58, 1984.
  • J.X. Chen, Z.L. Chen and G.X. Ji, Almost limited sets in Banach lattices, J. Math. Anal. Appl. 412, 547-553, 2014.
  • J. Diestel, Sequences and Series in Banach spaces, Springer-Verlag, New York Berlin, Heidelberg Tokyo, 1984.
  • P.G. Dodds and D.H. Fremlin, Compact operators on Banach lattices, Israel J. Math. 34, 287-320, 1979.
  • A. Elbour, N. Machrafi and M. Moussa, On the class of weak almost limited operators, Quaest. Math. 38 (6), 817-827, 2015.
  • K. El Fahri, N. Machrafi, J. H’michane and A. Elbour, Application of (L)-sets to some classes of operators, Mathematica Bohemica 141 (3), 327-338, 2016.
  • A. El Kaddouri, J. H’michane, K. Bouras and M. Moussa, On the class of weak* Dunford-Pettis operators, Rend. Circ. Mat. Palermo 62 (2), 261-265, 2013.
  • A. El Kaddouri and M. Moussa, About the class of ordered limited operators, Acta Universitatis Carolinae Mathematica et Physica 54 (1), 37-43, 2013.
  • J. H’Michane and K. El Fahri, On the domination of limited and order Dunford-Pettis operators , Ann. Math. Québec 39 (2), 169-176, 2015.
  • U. Krengel, Remark on the modulus of compact operators, Bull. Amer. Math. Soc. 72, 132-133, 1966.
  • T. Leavelle, The Reciprocal Dunford-Pettis property, Ann. Mat. Pura Appl to appear.
  • G.Ya. Lozanovsky, Two remarks concerning operators in partially ordered spaces (Russian), Vestnik Leningrad Univ. Mat. Mekh. Astronom. 19, 159-160, 1965.
  • N. Machrafi, A. Elbour, K. El Fahri and K. Bouras, On the positive weak almost limited operators, Arab J. Math. Sci. 21, 136-143, 2015.
  • N. Machrafi, A. Elbour and M. Moussa, Some characterizations of almost limited sets and applications, preprint: http://arxiv.org/abs/1312.2770, 2013.
  • P. Meyer-Nieberg, Banach lattices, Universitext, Springer-Verlag, Berlin, 1991.
  • A.W. Wickstead, Regular Operators between Banach Lattices, Positivity, Trends in Mathematics, 255-279, 2007.
  • W. Wnuk, Banach Lattices with the weak Dunford-Pettis Property, Atti Sem. Mat. Univ. Modena XLII, 227-236, 1994.
  • W. Wnuk, Banach lattices with order continuous norms, Polish Scientific Publishers PWN, Warsaw, 1999.
  • W. Wnuk, On the dual positive Schur property in Banach lattices, Positivity 17, 759-773, 2013.
  • A.C. Zaanen, Riesz spaces II, North Holland Publishing Company, 1983.

A note on weak almost limited operators

Year 2019, Volume: 48 Issue: 3, 759 - 770, 15.06.2019

Abstract

Let us recall that an operator $T:E\rightarrow F,$ between two Banach lattices, is said to be weak* Dunford-Pettis (resp. weak almost limited) if $f_{n}\left( Tx_{n}\right) \rightarrow 0$ whenever $(x_{n})$ converges weakly to $0$ in $E$ and $(f_{n})$ converges weak* to $0$ in $F^{\prime }$ (resp. $f_{n}\left( Tx_{n}\right) \rightarrow 0$ for all weakly null sequences $\left( x_{n}\right) \subset E$ and all weak* null sequences $\left(f_{n}\right) \subset F^{\prime }$ with pairwise disjoint terms). In this note, we state some sufficient conditions for an operator $R:G\rightarrow E$(resp. $S:F\rightarrow G$), between Banach lattices, under which the product $TR$ (resp. $ST$) is weak* Dunford-Pettis whenever $T:E\rightarrow F$ is an order bounded weak almost limited operator. As a consequence, we establish the coincidence of the above two classes of operators on order bounded operators, under a suitable lattice operations' sequential continuity of the spaces (resp. their duals) between which the operators are defined. We also look at the order structure of the vector space of weak almost limited operators between Banach lattices.

References

  • Y.A. Abramovich and A.W. Wickstead, Recent results on the order structure of com- pact operators, Irish Math. Soc. Bulletin 32, 34-45, 1994.
  • C.D. Aliprantis and O. Burkinshaw, Positive operators (Reprint of the 1985 original), Springer, Dordrecht, 2006.
  • B. Aqzzouz and K. Bouras, (L) sets and almost (L) set in Banach lattices, Quaest. Math. 36, 107-118, 2013.
  • B. Aqzzouz, A. Elbour and A.W. Wickstead, Positive almost Dunford-Pettis operators and their duality, Positivity 15, 185-197, 2011.
  • J. Bourgain and J. Diestel, Limited operators and strict cosingularity, Math. Nachr. 119, 55-58, 1984.
  • J.X. Chen, Z.L. Chen and G.X. Ji, Almost limited sets in Banach lattices, J. Math. Anal. Appl. 412, 547-553, 2014.
  • J. Diestel, Sequences and Series in Banach spaces, Springer-Verlag, New York Berlin, Heidelberg Tokyo, 1984.
  • P.G. Dodds and D.H. Fremlin, Compact operators on Banach lattices, Israel J. Math. 34, 287-320, 1979.
  • A. Elbour, N. Machrafi and M. Moussa, On the class of weak almost limited operators, Quaest. Math. 38 (6), 817-827, 2015.
  • K. El Fahri, N. Machrafi, J. H’michane and A. Elbour, Application of (L)-sets to some classes of operators, Mathematica Bohemica 141 (3), 327-338, 2016.
  • A. El Kaddouri, J. H’michane, K. Bouras and M. Moussa, On the class of weak* Dunford-Pettis operators, Rend. Circ. Mat. Palermo 62 (2), 261-265, 2013.
  • A. El Kaddouri and M. Moussa, About the class of ordered limited operators, Acta Universitatis Carolinae Mathematica et Physica 54 (1), 37-43, 2013.
  • J. H’Michane and K. El Fahri, On the domination of limited and order Dunford-Pettis operators , Ann. Math. Québec 39 (2), 169-176, 2015.
  • U. Krengel, Remark on the modulus of compact operators, Bull. Amer. Math. Soc. 72, 132-133, 1966.
  • T. Leavelle, The Reciprocal Dunford-Pettis property, Ann. Mat. Pura Appl to appear.
  • G.Ya. Lozanovsky, Two remarks concerning operators in partially ordered spaces (Russian), Vestnik Leningrad Univ. Mat. Mekh. Astronom. 19, 159-160, 1965.
  • N. Machrafi, A. Elbour, K. El Fahri and K. Bouras, On the positive weak almost limited operators, Arab J. Math. Sci. 21, 136-143, 2015.
  • N. Machrafi, A. Elbour and M. Moussa, Some characterizations of almost limited sets and applications, preprint: http://arxiv.org/abs/1312.2770, 2013.
  • P. Meyer-Nieberg, Banach lattices, Universitext, Springer-Verlag, Berlin, 1991.
  • A.W. Wickstead, Regular Operators between Banach Lattices, Positivity, Trends in Mathematics, 255-279, 2007.
  • W. Wnuk, Banach Lattices with the weak Dunford-Pettis Property, Atti Sem. Mat. Univ. Modena XLII, 227-236, 1994.
  • W. Wnuk, Banach lattices with order continuous norms, Polish Scientific Publishers PWN, Warsaw, 1999.
  • W. Wnuk, On the dual positive Schur property in Banach lattices, Positivity 17, 759-773, 2013.
  • A.C. Zaanen, Riesz spaces II, North Holland Publishing Company, 1983.
There are 24 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Nabil Machrafi 0000-0002-0667-6613

Kamal El Fahri This is me 0000-0003-3021-0263

Mohammed Moussa This is me 0000-0002-7301-2569

Birol Altın 0000-0002-1085-809X

Publication Date June 15, 2019
Published in Issue Year 2019 Volume: 48 Issue: 3

Cite

APA Machrafi, N., El Fahri, K., Moussa, M., Altın, B. (2019). A note on weak almost limited operators. Hacettepe Journal of Mathematics and Statistics, 48(3), 759-770.
AMA Machrafi N, El Fahri K, Moussa M, Altın B. A note on weak almost limited operators. Hacettepe Journal of Mathematics and Statistics. June 2019;48(3):759-770.
Chicago Machrafi, Nabil, Kamal El Fahri, Mohammed Moussa, and Birol Altın. “A Note on Weak Almost Limited Operators”. Hacettepe Journal of Mathematics and Statistics 48, no. 3 (June 2019): 759-70.
EndNote Machrafi N, El Fahri K, Moussa M, Altın B (June 1, 2019) A note on weak almost limited operators. Hacettepe Journal of Mathematics and Statistics 48 3 759–770.
IEEE N. Machrafi, K. El Fahri, M. Moussa, and B. Altın, “A note on weak almost limited operators”, Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 3, pp. 759–770, 2019.
ISNAD Machrafi, Nabil et al. “A Note on Weak Almost Limited Operators”. Hacettepe Journal of Mathematics and Statistics 48/3 (June 2019), 759-770.
JAMA Machrafi N, El Fahri K, Moussa M, Altın B. A note on weak almost limited operators. Hacettepe Journal of Mathematics and Statistics. 2019;48:759–770.
MLA Machrafi, Nabil et al. “A Note on Weak Almost Limited Operators”. Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 3, 2019, pp. 759-70.
Vancouver Machrafi N, El Fahri K, Moussa M, Altın B. A note on weak almost limited operators. Hacettepe Journal of Mathematics and Statistics. 2019;48(3):759-70.