Research Article
BibTex RIS Cite
Year 2019, Volume: 48 Issue: 4, 1121 - 1130, 08.08.2019

Abstract

References

  • [1] A. Abbasi, D. Hasanzadeh-Lelekami and H. Roshan-Shokalgourabi, Some results on the local cohomology of minimax modules, Czechoslovak Math. J. 64 (2), 327–333, 2014.
  • [2] M. Aghapournahr, On cofiniteness of local cohomology modules for a pair of ideals for small dimensions, J. Algebra Appl. 17 (2), 1850020, 2018.
  • [3] M. Aghapournahr, Cominimaxness of local cohomology modules, Czechoslovak Math. J. 69 (1), 75–86, 2019.
  • [4] M. Aghapournahr and K. Bahmanpour, Cofiniteness of weakly Laskerian local cohomology modules, Bull. Math. Soc. Sci. Math. Roumanie 105 (4), 347–356, 2014.
  • [5] M. Aghapournahr and K. Bahmanpour, Cofiniteness of general local cohomology modules for small dimensions, Bull. Korean Math. Soc. 53 (5), 1341–1352, 2016.
  • [6] M. Aghapournahr, L. Melkersson, A natural map in local cohomology, Ark. Mat. 48 (2), 243–251, 2010.
  • [7] J. Asadollahi, K. Khashyarmanesh and Sh. Salarian, A generalization of the cofiniteness problem in local cohomology modules, J. Aust. Math. Soc. 75 (3), 313–324, 2003.
  • [8] J. Azami, R. Naghipour, and B. Vakili, Finiteness properties of local cohomology modules for a-minimax modules, Proc. Amer. Math. Soc. 137 (2), 439–448, 2009.
  • [9] K. Bahmanpour and R. Naghipour, On the cofiniteness of local cohomology modules, Proc. Amer. Math. Soc. 136 (2008), 2359–2363.
  • [10] K. Bahmanpour and R. Naghipour, Cofiniteness of local cohomology modules for ideals of small dimension, J. Algebra 321 (7), 1997–2011, 2009.
  • [11] K. Bahmanpour, R. Naghipour and M. Sedghi, On the category of cofinite modules which is Abelian, Proc. Amer. Math. Soc. 142 (4), 1101–1107, 2014.
  • [12] M.H. Bijan-Zadeh, Torsion theory and local cohomology over commutative Noetherian ring, J. London Math. Soc. 19 (3), 402–410, 1979.
  • [13] M.H. Bijan-Zadeh, A common generalization of local cohomology theories, Glasgow Math. J. 21 (1), 173–181, 1980.
  • [14] K. Borna Lorestani, P. Sahandi and S. Yassemi, Artinian local cohomology modules, Canad. Math. Bull. 50 (4), 598–602, 2007.
  • [15] M.P. Brodmann and R.Y. Sharp Local cohomology-An algebraic introduction with geometric applications, Cambridge. Univ. Press, 1998.
  • [16] W. Bruns and J. Herzog, Cohen Macaulay Rings, in: Cambridge Studies in Advanced Mathematics, 39, Cambridge Univ. Press, Cambridge, UK, 1993.
  • [17] D. Delfino and T. Marley, Cofinite modules and local cohomology, J. Pure Appl. Algebra 121 (1), 45–52, 1997.
  • [18] M.T. Dibaei and S. Yassemi, Associated primes and cofiniteness of local cohomology modules, Manuscripta Math. 117 (2), 199–205, 2005.
  • [19] M.T. Dibaei and S. Yassemi, Associated primes of the local cohomology modules, in: Abelian groups, rings, modules and homological algebra, 49–56, Chapman and Hall/CRC, 2006.
  • [20] K. Divaani-Aazar and A. Mafi, Associated primes of local cohomology modules, Proc. Amer. Math. Soc. 133 (3), 655–660, 2005.
  • [21] E. Enochs, Flat covers and flat cotorsion modules, Proc. Amer. Math. Soc. 92 (2), 179–184, 1984.
  • [22] A. Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA2), North-Holland, Amsterdam, 1968.
  • [23] R. Hartshorne, Affine duality and cofiniteness, Invent. Math. 9 (2), 145–164, 1970.
  • [24] D. Hasanzadeh-Lelekami, H. Roshan-Shokalgourabi, Extension functors of cominimax modules, Comm. Algebra 45 (2), 621–629, 2017.
  • [25] C. Huneke and J. Koh, Cofiniteness and vanishing of local cohomology modules, Math. Proc. Cambridge Philos. Soc. 110 (3), 421–429, 1991.
  • [26] P. Hung Quy, On the finiteness of associated primes of local cohomology modules, Proc. Amer. Math. Soc. 138 (6), 1965–1968, 2010.
  • [27] Y. Irani, Cominimaxness with respect to ideals of dimension one, Bull. Korean Math. Soc. 54 (1), 289–298, 2017.
  • [28] K.I. Kawasaki, On a category of cofinite modules which is Abelian, Math. Z. 269 (1-2), 587–608, 2011.
  • [29] A. Mafi, On the local cohomology of minimax modules, Bull. Korean Math. Soc. 48 (6), 1125–1128, 2011.
  • [30] T. Marley and J.C. Vassilev, Cofiniteness and associated primes of local cohomology modules, J. Algebra 256 (1), 180–193, 2002.
  • [31] L. Melkersson, Properties of cofinite modules and applications to local cohomology, Math. Proc. Cambridge Philos. Soc. 125 (3), 417–423, 1999.
  • [32] L. Melkersson, Modules cofinite with respect to an ideal, J. Algebra 285 (2), 649–668, 2005.
  • [33] L. Melkersson, Cofiniteness with respect to ideals of dimension one, J. Algebra 372, 459–462, 2012.
  • [34] R. Takahashi, Y. Yoshino and T. Yoshizawa, Local cohomology based on a nonclosed support defined by a pair of ideals, J. Pure Appl. Algebra 213 (4), 582–600, 2009.
  • [35] T. Yoshizawa, Subcategories of extension modules by subcategories, Proc. Amer. Math. Soc. 140 (7), 2293–2305, 2012.
  • [36] T. Zink, Endlichkeitsbedingungen für Moduln über einem Noetherschen Ring, Math. Nachr. 64 (1), 239–252, 1974.
  • [37] H. Zöschinger, Minimax Moduln, J. Algebra 102 (1), 1–32, 1986.

Cominimaxness of certain general local cohomology modules

Year 2019, Volume: 48 Issue: 4, 1121 - 1130, 08.08.2019

Abstract

Let $R$ be a commutative Noetherian ring, $\Phi$ a system of ideals of $R$ and $I\in \Phi$. Let $t\in\Bbb{N}_0$ be an integer and $M$ an $R$-module such that $Ext^i_R(R/I,M)$ is minimax for all $i\leq t+1$. We prove that if the $R$-module $H^{i}_\Phi(M)$ is ${FD_{\leq 1}}$ (or weakly Laskerian) for all $i<t$, then $H^i_{\Phi}(M)$ is $\Phi$-cominimax for all $i<t$ and for any $FD_{\leq 0}$ (or minimax) submodule $N$ of $H^t_{\Phi}(M)$, the $R$-modules $Hom_{R}(R/I,H^t_{\Phi}(M)/N)$ and $Ext^1_{R}(R/I,H^t_{\Phi}(M)/N)$ are minimax. Let $N$ be a finitely generated $R$-module. We also prove that $Ext^j_{R}(N,H^i_\Phi(M))$ and $Tor^R_{j}(N,H^i_{\Phi}(M))$ are $\Phi$-cominimax for all $i$ and $j$ whenever $M$ is minimax and $H^i_{\Phi}(M)$ is ${FD_{\leq 1}}$ (or weakly Laskerian) for all $i$.

References

  • [1] A. Abbasi, D. Hasanzadeh-Lelekami and H. Roshan-Shokalgourabi, Some results on the local cohomology of minimax modules, Czechoslovak Math. J. 64 (2), 327–333, 2014.
  • [2] M. Aghapournahr, On cofiniteness of local cohomology modules for a pair of ideals for small dimensions, J. Algebra Appl. 17 (2), 1850020, 2018.
  • [3] M. Aghapournahr, Cominimaxness of local cohomology modules, Czechoslovak Math. J. 69 (1), 75–86, 2019.
  • [4] M. Aghapournahr and K. Bahmanpour, Cofiniteness of weakly Laskerian local cohomology modules, Bull. Math. Soc. Sci. Math. Roumanie 105 (4), 347–356, 2014.
  • [5] M. Aghapournahr and K. Bahmanpour, Cofiniteness of general local cohomology modules for small dimensions, Bull. Korean Math. Soc. 53 (5), 1341–1352, 2016.
  • [6] M. Aghapournahr, L. Melkersson, A natural map in local cohomology, Ark. Mat. 48 (2), 243–251, 2010.
  • [7] J. Asadollahi, K. Khashyarmanesh and Sh. Salarian, A generalization of the cofiniteness problem in local cohomology modules, J. Aust. Math. Soc. 75 (3), 313–324, 2003.
  • [8] J. Azami, R. Naghipour, and B. Vakili, Finiteness properties of local cohomology modules for a-minimax modules, Proc. Amer. Math. Soc. 137 (2), 439–448, 2009.
  • [9] K. Bahmanpour and R. Naghipour, On the cofiniteness of local cohomology modules, Proc. Amer. Math. Soc. 136 (2008), 2359–2363.
  • [10] K. Bahmanpour and R. Naghipour, Cofiniteness of local cohomology modules for ideals of small dimension, J. Algebra 321 (7), 1997–2011, 2009.
  • [11] K. Bahmanpour, R. Naghipour and M. Sedghi, On the category of cofinite modules which is Abelian, Proc. Amer. Math. Soc. 142 (4), 1101–1107, 2014.
  • [12] M.H. Bijan-Zadeh, Torsion theory and local cohomology over commutative Noetherian ring, J. London Math. Soc. 19 (3), 402–410, 1979.
  • [13] M.H. Bijan-Zadeh, A common generalization of local cohomology theories, Glasgow Math. J. 21 (1), 173–181, 1980.
  • [14] K. Borna Lorestani, P. Sahandi and S. Yassemi, Artinian local cohomology modules, Canad. Math. Bull. 50 (4), 598–602, 2007.
  • [15] M.P. Brodmann and R.Y. Sharp Local cohomology-An algebraic introduction with geometric applications, Cambridge. Univ. Press, 1998.
  • [16] W. Bruns and J. Herzog, Cohen Macaulay Rings, in: Cambridge Studies in Advanced Mathematics, 39, Cambridge Univ. Press, Cambridge, UK, 1993.
  • [17] D. Delfino and T. Marley, Cofinite modules and local cohomology, J. Pure Appl. Algebra 121 (1), 45–52, 1997.
  • [18] M.T. Dibaei and S. Yassemi, Associated primes and cofiniteness of local cohomology modules, Manuscripta Math. 117 (2), 199–205, 2005.
  • [19] M.T. Dibaei and S. Yassemi, Associated primes of the local cohomology modules, in: Abelian groups, rings, modules and homological algebra, 49–56, Chapman and Hall/CRC, 2006.
  • [20] K. Divaani-Aazar and A. Mafi, Associated primes of local cohomology modules, Proc. Amer. Math. Soc. 133 (3), 655–660, 2005.
  • [21] E. Enochs, Flat covers and flat cotorsion modules, Proc. Amer. Math. Soc. 92 (2), 179–184, 1984.
  • [22] A. Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA2), North-Holland, Amsterdam, 1968.
  • [23] R. Hartshorne, Affine duality and cofiniteness, Invent. Math. 9 (2), 145–164, 1970.
  • [24] D. Hasanzadeh-Lelekami, H. Roshan-Shokalgourabi, Extension functors of cominimax modules, Comm. Algebra 45 (2), 621–629, 2017.
  • [25] C. Huneke and J. Koh, Cofiniteness and vanishing of local cohomology modules, Math. Proc. Cambridge Philos. Soc. 110 (3), 421–429, 1991.
  • [26] P. Hung Quy, On the finiteness of associated primes of local cohomology modules, Proc. Amer. Math. Soc. 138 (6), 1965–1968, 2010.
  • [27] Y. Irani, Cominimaxness with respect to ideals of dimension one, Bull. Korean Math. Soc. 54 (1), 289–298, 2017.
  • [28] K.I. Kawasaki, On a category of cofinite modules which is Abelian, Math. Z. 269 (1-2), 587–608, 2011.
  • [29] A. Mafi, On the local cohomology of minimax modules, Bull. Korean Math. Soc. 48 (6), 1125–1128, 2011.
  • [30] T. Marley and J.C. Vassilev, Cofiniteness and associated primes of local cohomology modules, J. Algebra 256 (1), 180–193, 2002.
  • [31] L. Melkersson, Properties of cofinite modules and applications to local cohomology, Math. Proc. Cambridge Philos. Soc. 125 (3), 417–423, 1999.
  • [32] L. Melkersson, Modules cofinite with respect to an ideal, J. Algebra 285 (2), 649–668, 2005.
  • [33] L. Melkersson, Cofiniteness with respect to ideals of dimension one, J. Algebra 372, 459–462, 2012.
  • [34] R. Takahashi, Y. Yoshino and T. Yoshizawa, Local cohomology based on a nonclosed support defined by a pair of ideals, J. Pure Appl. Algebra 213 (4), 582–600, 2009.
  • [35] T. Yoshizawa, Subcategories of extension modules by subcategories, Proc. Amer. Math. Soc. 140 (7), 2293–2305, 2012.
  • [36] T. Zink, Endlichkeitsbedingungen für Moduln über einem Noetherschen Ring, Math. Nachr. 64 (1), 239–252, 1974.
  • [37] H. Zöschinger, Minimax Moduln, J. Algebra 102 (1), 1–32, 1986.
There are 37 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Moharram Aghapournahr This is me 0000-0002-8265-9700

Publication Date August 8, 2019
Published in Issue Year 2019 Volume: 48 Issue: 4

Cite

APA Aghapournahr, M. (2019). Cominimaxness of certain general local cohomology modules. Hacettepe Journal of Mathematics and Statistics, 48(4), 1121-1130.
AMA Aghapournahr M. Cominimaxness of certain general local cohomology modules. Hacettepe Journal of Mathematics and Statistics. August 2019;48(4):1121-1130.
Chicago Aghapournahr, Moharram. “Cominimaxness of Certain General Local Cohomology Modules”. Hacettepe Journal of Mathematics and Statistics 48, no. 4 (August 2019): 1121-30.
EndNote Aghapournahr M (August 1, 2019) Cominimaxness of certain general local cohomology modules. Hacettepe Journal of Mathematics and Statistics 48 4 1121–1130.
IEEE M. Aghapournahr, “Cominimaxness of certain general local cohomology modules”, Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 4, pp. 1121–1130, 2019.
ISNAD Aghapournahr, Moharram. “Cominimaxness of Certain General Local Cohomology Modules”. Hacettepe Journal of Mathematics and Statistics 48/4 (August 2019), 1121-1130.
JAMA Aghapournahr M. Cominimaxness of certain general local cohomology modules. Hacettepe Journal of Mathematics and Statistics. 2019;48:1121–1130.
MLA Aghapournahr, Moharram. “Cominimaxness of Certain General Local Cohomology Modules”. Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 4, 2019, pp. 1121-30.
Vancouver Aghapournahr M. Cominimaxness of certain general local cohomology modules. Hacettepe Journal of Mathematics and Statistics. 2019;48(4):1121-30.