Research Article
BibTex RIS Cite
Year 2019, Volume: 48 Issue: 4, 1146 - 1155, 08.08.2019

Abstract

References

  • [1] A.G. Elashvili, Canonical form and stationary subalgebras of points of general position for simple linear Lie groups, Funct. Anal. Appl. 6, 44–53, 1972.
  • [2] R. Güner, Klassifikation gewisser Darstellungen halbeinfacher Liealgebren, https://epub.uni-bayreuth.de/347/1/3.Diss.pdf.pdf.
  • [3] W.-Chung Hsiang and W.-Yi Hsiang, Differential actions of compact connected classical groups: II, Ann. of Math. (2), 91–92, 1970.
  • [4] J.E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer- Verlag, New York-Heidelberg-Berlin, 1972.
  • [5] M. Krämer, Hauptisotropiegruppen bei endlichen dimensionalen Darstellungen kompakter halbeinfacher Liegruppen, Diplomarbeit, Bonn, 1966.
  • [6] M. Krämer, Über Untergruppen kompakter Liegruppen als Isotropiegruppen bei linearen Aktionen, Math. Z. 147, 207–224, 1976.
  • [7] D.I. Panyushev, Complexity and rank of homegeneous spaces, Geom. Dedicata, 34, 249–269, 1990.
  • [8] J. Tits, Tabellen zu den einfachen Lie Gruppen und ihren Darstellungen, Lecture Notes in Mathematics No. 40, Berlin-Heidelberg-New York, Springer, 1967.
  • [9] M.A.A. Van Leeuwen, A.M. Cohen and B. Lisser, A package for Lie group computations, Can., Amsterdam 1992.

Reducible good representations of semisimple Lie algebras $A_r$ and $B_r$ Part I

Year 2019, Volume: 48 Issue: 4, 1146 - 1155, 08.08.2019

Abstract

Given a semisimple (preferably simple) complex Lie algebra $L$, we consider the monoid $\Gamma=\Gamma(L)$ of equivalence classes of the finite dimensional reducible complex representations of $L$. Here $\Gamma$ is identified with the lattice of the corresponding highest weights. (This equips $\Gamma$ with the monoid structure.) For $\pi\in\Gamma$ one considers the symmetric algebra $\displaystyle S(\pi)=\bigoplus_{n=0}^{\infty}S^n(\pi)$ (here regarded as a representation). The elements of $\Gamma$ ``occurring'' in $S(\pi)$ -- i.e., which are the highest weights of some irreducible component of the representation $S(\pi)$ -- form a subsemigroup $M(\pi)$ of $\Gamma$. Such a $M(\pi)$ has a naturally defined rank $r(\pi)$ with $1\leq r(\pi)\leq r = \text{rank of }L$. In this paper we give a classification, for all the simple $L=A_r$ and $L=B_r$ of all the $\pi$ with $r(\pi)< r$.

References

  • [1] A.G. Elashvili, Canonical form and stationary subalgebras of points of general position for simple linear Lie groups, Funct. Anal. Appl. 6, 44–53, 1972.
  • [2] R. Güner, Klassifikation gewisser Darstellungen halbeinfacher Liealgebren, https://epub.uni-bayreuth.de/347/1/3.Diss.pdf.pdf.
  • [3] W.-Chung Hsiang and W.-Yi Hsiang, Differential actions of compact connected classical groups: II, Ann. of Math. (2), 91–92, 1970.
  • [4] J.E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer- Verlag, New York-Heidelberg-Berlin, 1972.
  • [5] M. Krämer, Hauptisotropiegruppen bei endlichen dimensionalen Darstellungen kompakter halbeinfacher Liegruppen, Diplomarbeit, Bonn, 1966.
  • [6] M. Krämer, Über Untergruppen kompakter Liegruppen als Isotropiegruppen bei linearen Aktionen, Math. Z. 147, 207–224, 1976.
  • [7] D.I. Panyushev, Complexity and rank of homegeneous spaces, Geom. Dedicata, 34, 249–269, 1990.
  • [8] J. Tits, Tabellen zu den einfachen Lie Gruppen und ihren Darstellungen, Lecture Notes in Mathematics No. 40, Berlin-Heidelberg-New York, Springer, 1967.
  • [9] M.A.A. Van Leeuwen, A.M. Cohen and B. Lisser, A package for Lie group computations, Can., Amsterdam 1992.
There are 9 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Rıdvan Güner This is me 0000-0001-6137-4880

Publication Date August 8, 2019
Published in Issue Year 2019 Volume: 48 Issue: 4

Cite

APA Güner, R. (2019). Reducible good representations of semisimple Lie algebras $A_r$ and $B_r$ Part I. Hacettepe Journal of Mathematics and Statistics, 48(4), 1146-1155.
AMA Güner R. Reducible good representations of semisimple Lie algebras $A_r$ and $B_r$ Part I. Hacettepe Journal of Mathematics and Statistics. August 2019;48(4):1146-1155.
Chicago Güner, Rıdvan. “Reducible Good Representations of Semisimple Lie Algebras $A_r$ and $B_r$ Part I”. Hacettepe Journal of Mathematics and Statistics 48, no. 4 (August 2019): 1146-55.
EndNote Güner R (August 1, 2019) Reducible good representations of semisimple Lie algebras $A_r$ and $B_r$ Part I. Hacettepe Journal of Mathematics and Statistics 48 4 1146–1155.
IEEE R. Güner, “Reducible good representations of semisimple Lie algebras $A_r$ and $B_r$ Part I”, Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 4, pp. 1146–1155, 2019.
ISNAD Güner, Rıdvan. “Reducible Good Representations of Semisimple Lie Algebras $A_r$ and $B_r$ Part I”. Hacettepe Journal of Mathematics and Statistics 48/4 (August 2019), 1146-1155.
JAMA Güner R. Reducible good representations of semisimple Lie algebras $A_r$ and $B_r$ Part I. Hacettepe Journal of Mathematics and Statistics. 2019;48:1146–1155.
MLA Güner, Rıdvan. “Reducible Good Representations of Semisimple Lie Algebras $A_r$ and $B_r$ Part I”. Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 4, 2019, pp. 1146-55.
Vancouver Güner R. Reducible good representations of semisimple Lie algebras $A_r$ and $B_r$ Part I. Hacettepe Journal of Mathematics and Statistics. 2019;48(4):1146-55.