Year 2019, Volume 48 , Issue 5, Pages 1304 - 1311 2019-10-08

Resultants of quaternion polynomials

Xiangui Zhao [1] , Yang Zhang [2]


We generalize the concept of resultants to quaternion polynomials and investigate the relationships among resultants, greatest common right divisors and repeated right roots of quaternion polynomials.
quaternion, (double) resultant, greatest common right divisor
  • [1] L. Chen, Definition of determinant and Cramer solutions over the quaternion field, Acta Math. Sin. 7 (2), 171-180, 1991.
  • [2] D.A. Cox, J. Little and D. O’Shea, Ideals, varieties, and algorithms: an introduction to computational algebraic geometry and commutative algebra, 10, Springer, 2007.
  • [3] J. Dieudonné, Les déterminants sur un corps non commutatif, Bull. Soc. Math. France 71, 27-45, 1943.
  • [4] A.Lj. Erić, The resultant of non-commutative polynomials, Mat. Vesnik 60, 3-8, 2008.
  • [5] L. Feng and K. Zhao, Classifying zeros of two-sided quaternionic polynomials and computing zeros of two-sided polynomials with complex coefficients, Pac. J. Math. 262 (2), 317-337, 2013.
  • [6] I. Gelfand, S. Gelfand, V. Retakh and R. Lee Wilson, Quasideterminants, Adv. Math. 193 (1), 56-141, 2005.
  • [7] I.I. Kyrchei, Cramer’s rule for quaternionic systems of linear equations, J. Math. Sci. 155 (6), 839-858, 2008.
  • [8] T.Y. Lam, A first course in noncommutative rings, Graduate Texts in Mathematics 131, Springer-Verlag New York, 2001.
  • [9] I. Niven, Equations in quaternions, Amer. Math. Monthly 48 (10), 654-661, 1941.
  • [10] O. Ore, Theory of non-commutative polynomials, Ann. Math. 34 (3), 480–508, 1933.
  • [11] P. Rastall, Quaternions in relativity, Rev. Mod. Phys. 36 (3), 820-832, 1964.
  • [12] K. Shoemake, Animating rotation with quaternion curves, ACM SIGGRAPH Com- puter Graphics 19 (3), 245–254, 1985.
  • [13] G. Song and Q. Wang, Condensed Cramer rule for some restricted quaternion linear equations, Appl. Math. Comput. 218, 3110-3121, 2011.
  • [14] G. Song, Q. Wang and H. Chang, Cramer rule for the unique solution of restricted matrix equations over the quaternion skew fields, Comput. Math. Appl. 61 (6), 1576- 1589, 2011.
  • [15] R. Szeliski, Computer vision: algorithms and applications, Springer, 2011.
  • [16] J. von zur Gathen and J. Gerhard, Modern computer algebra, Cambridge University Press, 2013.
Primary Language en
Subjects Mathematics
Journal Section Mathematics
Authors

Orcid: 0000-0001-7613-0539
Author: Xiangui Zhao (Primary Author)

Orcid: 0000-0002-0540-0893
Author: Yang Zhang

Dates

Publication Date : October 8, 2019

Bibtex @research article { hujms629824, journal = {Hacettepe Journal of Mathematics and Statistics}, issn = {2651-477X}, eissn = {2651-477X}, address = {}, publisher = {Hacettepe University}, year = {2019}, volume = {48}, pages = {1304 - 1311}, doi = {}, title = {Resultants of quaternion polynomials}, key = {cite}, author = {Zhao, Xiangui and Zhang, Yang} }
APA Zhao, X , Zhang, Y . (2019). Resultants of quaternion polynomials. Hacettepe Journal of Mathematics and Statistics , 48 (5) , 1304-1311 . Retrieved from https://dergipark.org.tr/en/pub/hujms/issue/49321/629824
MLA Zhao, X , Zhang, Y . "Resultants of quaternion polynomials". Hacettepe Journal of Mathematics and Statistics 48 (2019 ): 1304-1311 <https://dergipark.org.tr/en/pub/hujms/issue/49321/629824>
Chicago Zhao, X , Zhang, Y . "Resultants of quaternion polynomials". Hacettepe Journal of Mathematics and Statistics 48 (2019 ): 1304-1311
RIS TY - JOUR T1 - Resultants of quaternion polynomials AU - Xiangui Zhao , Yang Zhang Y1 - 2019 PY - 2019 N1 - DO - T2 - Hacettepe Journal of Mathematics and Statistics JF - Journal JO - JOR SP - 1304 EP - 1311 VL - 48 IS - 5 SN - 2651-477X-2651-477X M3 - UR - Y2 - 2018 ER -
EndNote %0 Hacettepe Journal of Mathematics and Statistics Resultants of quaternion polynomials %A Xiangui Zhao , Yang Zhang %T Resultants of quaternion polynomials %D 2019 %J Hacettepe Journal of Mathematics and Statistics %P 2651-477X-2651-477X %V 48 %N 5 %R %U
ISNAD Zhao, Xiangui , Zhang, Yang . "Resultants of quaternion polynomials". Hacettepe Journal of Mathematics and Statistics 48 / 5 (October 2019): 1304-1311 .
AMA Zhao X , Zhang Y . Resultants of quaternion polynomials. Hacettepe Journal of Mathematics and Statistics. 2019; 48(5): 1304-1311.
Vancouver Zhao X , Zhang Y . Resultants of quaternion polynomials. Hacettepe Journal of Mathematics and Statistics. 2019; 48(5): 1311-1304.