Investigation of an impulsive Sturm-Liouville operator on semi axis
Year 2019,
Volume: 48 Issue: 5, 1409 - 1416, 08.10.2019
Şeyhmus Yardımcı
,
İbrahim Erdal
Abstract
The objective of this work is to investigate some spectral properties of an impulsive Sturm-Liouville boundary value problem on the semi axis. By the help of analytical properties of the Jost solution and asymptotic properties of a transfer matrix $M$, we examine the existence of the spectral singularities and eigenvalues of the impulsive operator generated by the Sturm-Liouville equation.
References
- [1] M. Adivar and E. Bairamov, Spectral singularities of the nonhomogeneous Sturm-
Liouville equations, Appl. Math. Lett. 15 (7), 825–832, 2002.
- [2] B.P. Allahverdiev, E. Bairamov and E. Ugurlu, Eigenparameter dependent Sturm-
Liouville problems in boundary conditions with transmission conditions, J. Math.
Anal. Appl. 401 (1), 388–396, 2013.
- [3] G. Başcanbaz and E. Bairamov, Discrete spectrum and principal functions of non-
selfadjoint differential operator, Czechoslovak Math. J. 49 (124)(4), 689–700, 1999.
- [4] D. Bainov and P. Simeonov, Oscillation theory of impulsive differential equations,
International Publications, Orlando, FL, 1998.
- [5] E. Bairamov and A.O. Çelebi, Spectral analysis of nonselfadjoint Schrödinger opera-
tors with spectral parameter in boundary conditions, Facta Univ. Ser. Math. Inform.
13, 79–94, 1998.
- [6] E. Bairamov and E. Kir, Spectral properties of a finite system of Sturm-Liouville
differential operators, Indian J. Pure Appl. Math. 35 (2), 249–256, 2004.
- [7] E. Bairamov, Y. Aygar and B. Eren, Scattering theory of impulsive Sturm-Liouville
equations, Filomat, 31, 5401–5409, 2017.
- [8] E. Bairamov, Ö Çakar and A.M. Krall, An eigenfunction expansion for a quadratic
pencil of a Schrödinger operator with spectral singularities, J. Differential Equations,
151 (2), 268–289, 1999.
- [9] G.Sh. Guseinov, On the concept of spectral singularities, Pramana-J. Phys. 73 (3),
587–603, 2009.
- [10] H.M. Huseynov and A.H. Jamshidipour, On Jost solutions of Sturm-Liouville equa-
tions with spectral parameter in discontinuity condition, Trans. Natl. Acad. Sci. Azerb.
Ser. Phys.-Tech. Math. Sci. 30 (4, Mathematics), 61–68, 2010.
- [11] A.M. Krall, E. Bairamov and Ö. Çakar, Spectrum and spectral singularities of a
quadratic pencil of a Schrödinger operator with a general boundary condition, J. Dif-
ferential Equations, 151 (2), 252–267, 1999.
- [12] B.M. Levitan and I.S. Sargsyan, Sturm-Liouville and Dirac Operators, “Nauka”,
Moscow, 1988.
- [13] V.A. Marchenko, Sturm-Liouville operators and applications, volume 22 of Operator
Theory: Advances and Applications, Birkhäuser Verlag, Basel, 1986. Translated from
the Russian by A. Iacob.
- [14] A. Mostafazadeh, Spectral singularities of a general point interaction, J. Phys. A. 6
(1), 47–55, 2011.
- [15] A. Mostafazadeh and H. Mehri-Dehnavi, Spectral singularities, biorthonormal systems
and a two-parameter family of complex point interactions, J. Phys. A. 42 (12), 125303,
1–27, 2009.
- [16] O.Sh. Mukhtarov and E. Tunç, Eigenvalue problems for Sturm-Liouville equations
with transmission conditions, Israel J. Math. 144, 367–380, 2004.
- [17] O.Sh. Mukhtarov, M. Kadakal and F.S. Muhtarov, On discontinuous Sturm-Liouville
problems with transmission conditions, J. Math. Kyoto Univ. 44 (4), 779–798, 2004.
- [18] M.A. Naimark, Investigation of the spectrum and the expansion in eigenfunctions of a
non-selfadjoint differential operator of the second order on a semi-axis, Amer. Math.
Soc. Transl. (2), 16, 103–193, 1960.
- [19] M.A. Naimark, Linear differantial operators, Frederick Ungar Publishing Co. New
York, 1968.
- [20] Pavlov, B. S. On the spectral theory of non-selfadjoint differential operators, Dokl.
Akad. Nauk SSSR, 146, 1267–1270, 1962.
- [21] A.M. Samoilenko and N.A. Perestyuk, Impulsive differential equations, volume 14 of
World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises,
World Scientific Publishing Co., Inc., River Edge, NJ, 1995. With a preface by Yu.
A. Mitropol′skiıand a supplement by S. I. Trofimchuk, Translated from the Russian
by Y. Chapovsky.
- [22] J. Schwartz, Some non-selfadjoint operators, Comm. Pure Appl. Math. 13, 609–639,
1960.
- [23] E. Uğurlu and E. Bairamov, Dissipative operators with impulsive conditions, J. Math.
Chem. 51 (6), 1670–1680, 2013.
Year 2019,
Volume: 48 Issue: 5, 1409 - 1416, 08.10.2019
Şeyhmus Yardımcı
,
İbrahim Erdal
References
- [1] M. Adivar and E. Bairamov, Spectral singularities of the nonhomogeneous Sturm-
Liouville equations, Appl. Math. Lett. 15 (7), 825–832, 2002.
- [2] B.P. Allahverdiev, E. Bairamov and E. Ugurlu, Eigenparameter dependent Sturm-
Liouville problems in boundary conditions with transmission conditions, J. Math.
Anal. Appl. 401 (1), 388–396, 2013.
- [3] G. Başcanbaz and E. Bairamov, Discrete spectrum and principal functions of non-
selfadjoint differential operator, Czechoslovak Math. J. 49 (124)(4), 689–700, 1999.
- [4] D. Bainov and P. Simeonov, Oscillation theory of impulsive differential equations,
International Publications, Orlando, FL, 1998.
- [5] E. Bairamov and A.O. Çelebi, Spectral analysis of nonselfadjoint Schrödinger opera-
tors with spectral parameter in boundary conditions, Facta Univ. Ser. Math. Inform.
13, 79–94, 1998.
- [6] E. Bairamov and E. Kir, Spectral properties of a finite system of Sturm-Liouville
differential operators, Indian J. Pure Appl. Math. 35 (2), 249–256, 2004.
- [7] E. Bairamov, Y. Aygar and B. Eren, Scattering theory of impulsive Sturm-Liouville
equations, Filomat, 31, 5401–5409, 2017.
- [8] E. Bairamov, Ö Çakar and A.M. Krall, An eigenfunction expansion for a quadratic
pencil of a Schrödinger operator with spectral singularities, J. Differential Equations,
151 (2), 268–289, 1999.
- [9] G.Sh. Guseinov, On the concept of spectral singularities, Pramana-J. Phys. 73 (3),
587–603, 2009.
- [10] H.M. Huseynov and A.H. Jamshidipour, On Jost solutions of Sturm-Liouville equa-
tions with spectral parameter in discontinuity condition, Trans. Natl. Acad. Sci. Azerb.
Ser. Phys.-Tech. Math. Sci. 30 (4, Mathematics), 61–68, 2010.
- [11] A.M. Krall, E. Bairamov and Ö. Çakar, Spectrum and spectral singularities of a
quadratic pencil of a Schrödinger operator with a general boundary condition, J. Dif-
ferential Equations, 151 (2), 252–267, 1999.
- [12] B.M. Levitan and I.S. Sargsyan, Sturm-Liouville and Dirac Operators, “Nauka”,
Moscow, 1988.
- [13] V.A. Marchenko, Sturm-Liouville operators and applications, volume 22 of Operator
Theory: Advances and Applications, Birkhäuser Verlag, Basel, 1986. Translated from
the Russian by A. Iacob.
- [14] A. Mostafazadeh, Spectral singularities of a general point interaction, J. Phys. A. 6
(1), 47–55, 2011.
- [15] A. Mostafazadeh and H. Mehri-Dehnavi, Spectral singularities, biorthonormal systems
and a two-parameter family of complex point interactions, J. Phys. A. 42 (12), 125303,
1–27, 2009.
- [16] O.Sh. Mukhtarov and E. Tunç, Eigenvalue problems for Sturm-Liouville equations
with transmission conditions, Israel J. Math. 144, 367–380, 2004.
- [17] O.Sh. Mukhtarov, M. Kadakal and F.S. Muhtarov, On discontinuous Sturm-Liouville
problems with transmission conditions, J. Math. Kyoto Univ. 44 (4), 779–798, 2004.
- [18] M.A. Naimark, Investigation of the spectrum and the expansion in eigenfunctions of a
non-selfadjoint differential operator of the second order on a semi-axis, Amer. Math.
Soc. Transl. (2), 16, 103–193, 1960.
- [19] M.A. Naimark, Linear differantial operators, Frederick Ungar Publishing Co. New
York, 1968.
- [20] Pavlov, B. S. On the spectral theory of non-selfadjoint differential operators, Dokl.
Akad. Nauk SSSR, 146, 1267–1270, 1962.
- [21] A.M. Samoilenko and N.A. Perestyuk, Impulsive differential equations, volume 14 of
World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises,
World Scientific Publishing Co., Inc., River Edge, NJ, 1995. With a preface by Yu.
A. Mitropol′skiıand a supplement by S. I. Trofimchuk, Translated from the Russian
by Y. Chapovsky.
- [22] J. Schwartz, Some non-selfadjoint operators, Comm. Pure Appl. Math. 13, 609–639,
1960.
- [23] E. Uğurlu and E. Bairamov, Dissipative operators with impulsive conditions, J. Math.
Chem. 51 (6), 1670–1680, 2013.