Research Article
BibTex RIS Cite

Investigation of an impulsive Sturm-Liouville operator on semi axis

Year 2019, Volume: 48 Issue: 5, 1409 - 1416, 08.10.2019

Abstract

The objective of this work is to investigate some spectral properties of an impulsive Sturm-Liouville boundary value problem on the semi axis. By the help of analytical properties of the Jost solution and asymptotic properties of a transfer matrix $M$, we examine the existence of the spectral singularities and eigenvalues of the impulsive operator generated by the Sturm-Liouville equation.

References

  • [1] M. Adivar and E. Bairamov, Spectral singularities of the nonhomogeneous Sturm- Liouville equations, Appl. Math. Lett. 15 (7), 825–832, 2002.
  • [2] B.P. Allahverdiev, E. Bairamov and E. Ugurlu, Eigenparameter dependent Sturm- Liouville problems in boundary conditions with transmission conditions, J. Math. Anal. Appl. 401 (1), 388–396, 2013.
  • [3] G. Başcanbaz and E. Bairamov, Discrete spectrum and principal functions of non- selfadjoint differential operator, Czechoslovak Math. J. 49 (124)(4), 689–700, 1999.
  • [4] D. Bainov and P. Simeonov, Oscillation theory of impulsive differential equations, International Publications, Orlando, FL, 1998.
  • [5] E. Bairamov and A.O. Çelebi, Spectral analysis of nonselfadjoint Schrödinger opera- tors with spectral parameter in boundary conditions, Facta Univ. Ser. Math. Inform. 13, 79–94, 1998.
  • [6] E. Bairamov and E. Kir, Spectral properties of a finite system of Sturm-Liouville differential operators, Indian J. Pure Appl. Math. 35 (2), 249–256, 2004.
  • [7] E. Bairamov, Y. Aygar and B. Eren, Scattering theory of impulsive Sturm-Liouville equations, Filomat, 31, 5401–5409, 2017.
  • [8] E. Bairamov, Ö Çakar and A.M. Krall, An eigenfunction expansion for a quadratic pencil of a Schrödinger operator with spectral singularities, J. Differential Equations, 151 (2), 268–289, 1999.
  • [9] G.Sh. Guseinov, On the concept of spectral singularities, Pramana-J. Phys. 73 (3), 587–603, 2009.
  • [10] H.M. Huseynov and A.H. Jamshidipour, On Jost solutions of Sturm-Liouville equa- tions with spectral parameter in discontinuity condition, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. 30 (4, Mathematics), 61–68, 2010.
  • [11] A.M. Krall, E. Bairamov and Ö. Çakar, Spectrum and spectral singularities of a quadratic pencil of a Schrödinger operator with a general boundary condition, J. Dif- ferential Equations, 151 (2), 252–267, 1999.
  • [12] B.M. Levitan and I.S. Sargsyan, Sturm-Liouville and Dirac Operators, “Nauka”, Moscow, 1988.
  • [13] V.A. Marchenko, Sturm-Liouville operators and applications, volume 22 of Operator Theory: Advances and Applications, Birkhäuser Verlag, Basel, 1986. Translated from the Russian by A. Iacob.
  • [14] A. Mostafazadeh, Spectral singularities of a general point interaction, J. Phys. A. 6 (1), 47–55, 2011.
  • [15] A. Mostafazadeh and H. Mehri-Dehnavi, Spectral singularities, biorthonormal systems and a two-parameter family of complex point interactions, J. Phys. A. 42 (12), 125303, 1–27, 2009.
  • [16] O.Sh. Mukhtarov and E. Tunç, Eigenvalue problems for Sturm-Liouville equations with transmission conditions, Israel J. Math. 144, 367–380, 2004.
  • [17] O.Sh. Mukhtarov, M. Kadakal and F.S. Muhtarov, On discontinuous Sturm-Liouville problems with transmission conditions, J. Math. Kyoto Univ. 44 (4), 779–798, 2004.
  • [18] M.A. Naimark, Investigation of the spectrum and the expansion in eigenfunctions of a non-selfadjoint differential operator of the second order on a semi-axis, Amer. Math. Soc. Transl. (2), 16, 103–193, 1960.
  • [19] M.A. Naimark, Linear differantial operators, Frederick Ungar Publishing Co. New York, 1968.
  • [20] Pavlov, B. S. On the spectral theory of non-selfadjoint differential operators, Dokl. Akad. Nauk SSSR, 146, 1267–1270, 1962.
  • [21] A.M. Samoilenko and N.A. Perestyuk, Impulsive differential equations, volume 14 of World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, World Scientific Publishing Co., Inc., River Edge, NJ, 1995. With a preface by Yu. A. Mitropol′skiıand a supplement by S. I. Trofimchuk, Translated from the Russian by Y. Chapovsky.
  • [22] J. Schwartz, Some non-selfadjoint operators, Comm. Pure Appl. Math. 13, 609–639, 1960.
  • [23] E. Uğurlu and E. Bairamov, Dissipative operators with impulsive conditions, J. Math. Chem. 51 (6), 1670–1680, 2013.
Year 2019, Volume: 48 Issue: 5, 1409 - 1416, 08.10.2019

Abstract

References

  • [1] M. Adivar and E. Bairamov, Spectral singularities of the nonhomogeneous Sturm- Liouville equations, Appl. Math. Lett. 15 (7), 825–832, 2002.
  • [2] B.P. Allahverdiev, E. Bairamov and E. Ugurlu, Eigenparameter dependent Sturm- Liouville problems in boundary conditions with transmission conditions, J. Math. Anal. Appl. 401 (1), 388–396, 2013.
  • [3] G. Başcanbaz and E. Bairamov, Discrete spectrum and principal functions of non- selfadjoint differential operator, Czechoslovak Math. J. 49 (124)(4), 689–700, 1999.
  • [4] D. Bainov and P. Simeonov, Oscillation theory of impulsive differential equations, International Publications, Orlando, FL, 1998.
  • [5] E. Bairamov and A.O. Çelebi, Spectral analysis of nonselfadjoint Schrödinger opera- tors with spectral parameter in boundary conditions, Facta Univ. Ser. Math. Inform. 13, 79–94, 1998.
  • [6] E. Bairamov and E. Kir, Spectral properties of a finite system of Sturm-Liouville differential operators, Indian J. Pure Appl. Math. 35 (2), 249–256, 2004.
  • [7] E. Bairamov, Y. Aygar and B. Eren, Scattering theory of impulsive Sturm-Liouville equations, Filomat, 31, 5401–5409, 2017.
  • [8] E. Bairamov, Ö Çakar and A.M. Krall, An eigenfunction expansion for a quadratic pencil of a Schrödinger operator with spectral singularities, J. Differential Equations, 151 (2), 268–289, 1999.
  • [9] G.Sh. Guseinov, On the concept of spectral singularities, Pramana-J. Phys. 73 (3), 587–603, 2009.
  • [10] H.M. Huseynov and A.H. Jamshidipour, On Jost solutions of Sturm-Liouville equa- tions with spectral parameter in discontinuity condition, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. 30 (4, Mathematics), 61–68, 2010.
  • [11] A.M. Krall, E. Bairamov and Ö. Çakar, Spectrum and spectral singularities of a quadratic pencil of a Schrödinger operator with a general boundary condition, J. Dif- ferential Equations, 151 (2), 252–267, 1999.
  • [12] B.M. Levitan and I.S. Sargsyan, Sturm-Liouville and Dirac Operators, “Nauka”, Moscow, 1988.
  • [13] V.A. Marchenko, Sturm-Liouville operators and applications, volume 22 of Operator Theory: Advances and Applications, Birkhäuser Verlag, Basel, 1986. Translated from the Russian by A. Iacob.
  • [14] A. Mostafazadeh, Spectral singularities of a general point interaction, J. Phys. A. 6 (1), 47–55, 2011.
  • [15] A. Mostafazadeh and H. Mehri-Dehnavi, Spectral singularities, biorthonormal systems and a two-parameter family of complex point interactions, J. Phys. A. 42 (12), 125303, 1–27, 2009.
  • [16] O.Sh. Mukhtarov and E. Tunç, Eigenvalue problems for Sturm-Liouville equations with transmission conditions, Israel J. Math. 144, 367–380, 2004.
  • [17] O.Sh. Mukhtarov, M. Kadakal and F.S. Muhtarov, On discontinuous Sturm-Liouville problems with transmission conditions, J. Math. Kyoto Univ. 44 (4), 779–798, 2004.
  • [18] M.A. Naimark, Investigation of the spectrum and the expansion in eigenfunctions of a non-selfadjoint differential operator of the second order on a semi-axis, Amer. Math. Soc. Transl. (2), 16, 103–193, 1960.
  • [19] M.A. Naimark, Linear differantial operators, Frederick Ungar Publishing Co. New York, 1968.
  • [20] Pavlov, B. S. On the spectral theory of non-selfadjoint differential operators, Dokl. Akad. Nauk SSSR, 146, 1267–1270, 1962.
  • [21] A.M. Samoilenko and N.A. Perestyuk, Impulsive differential equations, volume 14 of World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, World Scientific Publishing Co., Inc., River Edge, NJ, 1995. With a preface by Yu. A. Mitropol′skiıand a supplement by S. I. Trofimchuk, Translated from the Russian by Y. Chapovsky.
  • [22] J. Schwartz, Some non-selfadjoint operators, Comm. Pure Appl. Math. 13, 609–639, 1960.
  • [23] E. Uğurlu and E. Bairamov, Dissipative operators with impulsive conditions, J. Math. Chem. 51 (6), 1670–1680, 2013.
There are 23 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Şeyhmus Yardımcı 0000-0002-1062-9000

İbrahim Erdal 0000-0002-4445-2389

Publication Date October 8, 2019
Published in Issue Year 2019 Volume: 48 Issue: 5

Cite

APA Yardımcı, Ş., & Erdal, İ. (2019). Investigation of an impulsive Sturm-Liouville operator on semi axis. Hacettepe Journal of Mathematics and Statistics, 48(5), 1409-1416.
AMA Yardımcı Ş, Erdal İ. Investigation of an impulsive Sturm-Liouville operator on semi axis. Hacettepe Journal of Mathematics and Statistics. October 2019;48(5):1409-1416.
Chicago Yardımcı, Şeyhmus, and İbrahim Erdal. “Investigation of an Impulsive Sturm-Liouville Operator on Semi Axis”. Hacettepe Journal of Mathematics and Statistics 48, no. 5 (October 2019): 1409-16.
EndNote Yardımcı Ş, Erdal İ (October 1, 2019) Investigation of an impulsive Sturm-Liouville operator on semi axis. Hacettepe Journal of Mathematics and Statistics 48 5 1409–1416.
IEEE Ş. Yardımcı and İ. Erdal, “Investigation of an impulsive Sturm-Liouville operator on semi axis”, Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 5, pp. 1409–1416, 2019.
ISNAD Yardımcı, Şeyhmus - Erdal, İbrahim. “Investigation of an Impulsive Sturm-Liouville Operator on Semi Axis”. Hacettepe Journal of Mathematics and Statistics 48/5 (October 2019), 1409-1416.
JAMA Yardımcı Ş, Erdal İ. Investigation of an impulsive Sturm-Liouville operator on semi axis. Hacettepe Journal of Mathematics and Statistics. 2019;48:1409–1416.
MLA Yardımcı, Şeyhmus and İbrahim Erdal. “Investigation of an Impulsive Sturm-Liouville Operator on Semi Axis”. Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 5, 2019, pp. 1409-16.
Vancouver Yardımcı Ş, Erdal İ. Investigation of an impulsive Sturm-Liouville operator on semi axis. Hacettepe Journal of Mathematics and Statistics. 2019;48(5):1409-16.