Year 2019, Volume 48 , Issue 5, Pages 1443 - 1453 2019-10-08

Quantale-valued uniform convergence towers for quantale-valued metric spaces

Gunther Jäger [1]


We show that quantale-valued metric spaces and quantale-valued partial metric spaces allow natural quantale-valued uniform convergence structures. We furthermore characterize quantale-valued metric spaces and quantale-valued partial metric spaces by these quantale-valued uniform convergence structures. For special choices of the quantale, the results specialize to metric spaces and probabilistic metric spaces.
$L$-metric space, $L$-partial metric space, $L$-uniform convergence tower space
  • [1] J. Adámek, H. Herrlich, and G.E. Strecker, Abstract and Concrete Categories, Wiley, New York, 1989.
  • [2] T.M.G. Ahsanullah and G. Jäger, Probabilistic uniform convergence spaces redefined, Acta Math. Hungarica, 146, 376–390, 2015.
  • [3] N. Bourbaki, General topology, Chapters 1 – 4, Springer Verlag, Berlin - Heidelberg - New York - London - Paris - Tokyo, 1990.
  • [4] P. Brock, Probabilistic convergence spaces and generalized metric spaces, Int. J. Math. and Math. Sci. 21, 439–452, 1998.
  • [5] P. Brock and D.C. Kent, Approach spaces, limit tower spaces, and probabilistic con- vergence spaces, Appl. Cat. Structures, 5, 99–110, 1997.
  • [6] R.C. Flagg, Completeness in continuity spaces, in: Category Theory 1991, CMS Conf. Proc. 13, 183–199, 1992.
  • [7] R.C. Flagg, Quantales and continuity spaces, Algebra Univers. 37, 257–276, 1997.
  • [8] L.C. Florescu, Probabilistic convergence structures, Aequationes Math. 38, 123–145, 1989.
  • [9] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M.W. Mislove and D.S. Scott, Continuous lattices and domains, Cambridge University Press, 2003.
  • [10] G. Jäger, A convergence theory for probabilistic metric spaces, Quaest. Math. 38, 587–599, 2015.
  • [11] G. Jäger, A common framework for lattice-valued, probabilistic and approach uniform (convergence) spaces, Iran. J. Fuzzy Syst. 14, 67–82, 2017.
  • [12] G. Jäger and T.M.G. Ahsanullah, Characterization of quantale-valued metric spaces and quantale-valued partial metric spaces by convergence, Appl. Gen. Topol. 19 (1), 129–144, 2018.
  • [13] R. Kopperman, S. Matthews and H. Pajoohesh, Partial metrizability in value quan- tales, Appl. Gen. Topol. 5, 115 – 127, 2004.
  • [14] F.W. Lawvere, Metric spaces, generalized logic, and closed categories, Rendiconti del Seminario Matematico e Fisico di Milano, 43, 135–166, 1973. Reprinted in: Repr. Theory Appl. Categ. 1, 1–37, 2002.
  • [15] Y.J. Lee and B. Windels, Transitivity in uniform approach theory, Int. J. Math. Math. Sci. 32, 707–720, 2002.
  • [16] R. Lowen, Approach spaces. The missing link in the topology-uniformity-metric triad, Claredon Press, Oxford, 1997.
  • [17] H. Nusser, A generalization of probabilistic uniform spaces, Appl. Categ. Structures, 10, 81–98, 2002.
  • [18] G. Preuss, Foundations of topology. An approach to convenient topology, Kluwer Aca- demic Publishers, Dordrecht, 2002.
  • [19] G.N. Raney, A subdirect-union representation for completely distributive complete lattices, Proc. Amer. Math. Soc. 4, 518–512, 1953.
  • [20] G.D. Richardson and D.C. Kent, Probabilistic convergence spaces, J. Austral. Math. Soc. (Series A), 61, 400–420, 1996.
  • [21] B. Schweizer and A. Sklar, Probabilistic metric spaces, North Holland, New York, 1983.
  • [22] R.M. Tardiff, Topologies for probabilistic metric spaces, Pacific J. Math. 65, 233–251, 1976.
Primary Language en
Subjects Mathematics
Journal Section Mathematics
Authors

Orcid: 0000-0002-1495-4564
Author: Gunther Jäger (Primary Author)

Dates

Publication Date : October 8, 2019

Bibtex @research article { hujms629908, journal = {Hacettepe Journal of Mathematics and Statistics}, issn = {2651-477X}, eissn = {2651-477X}, address = {}, publisher = {Hacettepe University}, year = {2019}, volume = {48}, pages = {1443 - 1453}, doi = {}, title = {Quantale-valued uniform convergence towers for quantale-valued metric spaces}, key = {cite}, author = {Jäger, Gunther} }
APA Jäger, G . (2019). Quantale-valued uniform convergence towers for quantale-valued metric spaces. Hacettepe Journal of Mathematics and Statistics , 48 (5) , 1443-1453 . Retrieved from https://dergipark.org.tr/en/pub/hujms/issue/49321/629908
MLA Jäger, G . "Quantale-valued uniform convergence towers for quantale-valued metric spaces". Hacettepe Journal of Mathematics and Statistics 48 (2019 ): 1443-1453 <https://dergipark.org.tr/en/pub/hujms/issue/49321/629908>
Chicago Jäger, G . "Quantale-valued uniform convergence towers for quantale-valued metric spaces". Hacettepe Journal of Mathematics and Statistics 48 (2019 ): 1443-1453
RIS TY - JOUR T1 - Quantale-valued uniform convergence towers for quantale-valued metric spaces AU - Gunther Jäger Y1 - 2019 PY - 2019 N1 - DO - T2 - Hacettepe Journal of Mathematics and Statistics JF - Journal JO - JOR SP - 1443 EP - 1453 VL - 48 IS - 5 SN - 2651-477X-2651-477X M3 - UR - Y2 - 2018 ER -
EndNote %0 Hacettepe Journal of Mathematics and Statistics Quantale-valued uniform convergence towers for quantale-valued metric spaces %A Gunther Jäger %T Quantale-valued uniform convergence towers for quantale-valued metric spaces %D 2019 %J Hacettepe Journal of Mathematics and Statistics %P 2651-477X-2651-477X %V 48 %N 5 %R %U
ISNAD Jäger, Gunther . "Quantale-valued uniform convergence towers for quantale-valued metric spaces". Hacettepe Journal of Mathematics and Statistics 48 / 5 (October 2019): 1443-1453 .
AMA Jäger G . Quantale-valued uniform convergence towers for quantale-valued metric spaces. Hacettepe Journal of Mathematics and Statistics. 2019; 48(5): 1443-1453.
Vancouver Jäger G . Quantale-valued uniform convergence towers for quantale-valued metric spaces. Hacettepe Journal of Mathematics and Statistics. 2019; 48(5): 1453-1443.