We develop a theory of universal central extensions of Hom-Lie algebras. Classical results of universal central extensions of Lie algebras
cannot be completely extended to Hom-Lie algebras setting, because
of the composition of two central extensions is not central. This fact
leads to introduce the notion of universal α-central extension. Classical results as the existence of a universal central extension of a perfect
Hom-Lie algebra remains true, but others as the central extensions of
the middle term of a universal central extension is split only holds for
α-central extensions. A homological characterization of universal (α)-
central extensions is given.
Hom-Lie algebra homology Hom-module (universal) central extension (universal) α-central extension
Primary Language | English |
---|---|
Subjects | Mathematical Sciences |
Journal Section | Mathematics |
Authors | |
Publication Date | April 1, 2015 |
Published in Issue | Year 2015 Volume: 44 Issue: 2 |