In this paper we continue to develop a theory on a new reproducing kernel Hilbert space related to the decomposition theorem for harmonic functions on a domain of the form Ω\K, where Ω is an open subset of Rn and K a compact subset of Ω.
Memić, A. (2015). On a new reproducing kernel Hilbert space and a boundary value problem for harmonic functions. Hacettepe Journal of Mathematics and Statistics, 44(5), 1079-1085.
AMA
Memić A. On a new reproducing kernel Hilbert space and a boundary value problem for harmonic functions. Hacettepe Journal of Mathematics and Statistics. October 2015;44(5):1079-1085.
Chicago
Memić, Alem. “On a New Reproducing Kernel Hilbert Space and a Boundary Value Problem for Harmonic Functions”. Hacettepe Journal of Mathematics and Statistics 44, no. 5 (October 2015): 1079-85.
EndNote
Memić A (October 1, 2015) On a new reproducing kernel Hilbert space and a boundary value problem for harmonic functions. Hacettepe Journal of Mathematics and Statistics 44 5 1079–1085.
IEEE
A. Memić, “On a new reproducing kernel Hilbert space and a boundary value problem for harmonic functions”, Hacettepe Journal of Mathematics and Statistics, vol. 44, no. 5, pp. 1079–1085, 2015.
ISNAD
Memić, Alem. “On a New Reproducing Kernel Hilbert Space and a Boundary Value Problem for Harmonic Functions”. Hacettepe Journal of Mathematics and Statistics 44/5 (October 2015), 1079-1085.
JAMA
Memić A. On a new reproducing kernel Hilbert space and a boundary value problem for harmonic functions. Hacettepe Journal of Mathematics and Statistics. 2015;44:1079–1085.
MLA
Memić, Alem. “On a New Reproducing Kernel Hilbert Space and a Boundary Value Problem for Harmonic Functions”. Hacettepe Journal of Mathematics and Statistics, vol. 44, no. 5, 2015, pp. 1079-85.
Vancouver
Memić A. On a new reproducing kernel Hilbert space and a boundary value problem for harmonic functions. Hacettepe Journal of Mathematics and Statistics. 2015;44(5):1079-85.