Research Article
BibTex RIS Cite
Year 2020, Volume: 49 Issue: 1, 273 - 281, 06.02.2020
https://doi.org/10.15672/hujms.546988

Abstract

References

  • [1] A. Abdollahi, S.M.J. Amiri, and A.M. Hassanabadi, Groups with specific number of centralizers, Houston J. Math. 33 (1), 43–57, 2007.
  • [2] S.M.J. Amiri and H. Rostami, Centralizers and the maximum size of the pairwise noncommuting elements in finite groups, Hacet. J. Math Stat. 46 (2), 193–198, 2017.
  • [3] A.R. Ashrafi, On finite groups with a given number of centralizers, Algebra Colloq. 7 (2), 139–146, 2000.
  • [4] A.R. Ashrafi, Counting the centralizers of some finite groups, J. Korean Comput. Appl. Math. 7 (1), 115–124, 2000.
  • [5] A.R. Ashrafi and B. Taeri, On finite groups with a certain number of centralizers, J. Appl. Math. Comput. 17 (12), 217–227, 2005.
  • [6] A.R. Ashrafi and B. Taeri, On finite groups with exactly seven element centralizers, J. Appl. Math. Comput. 22 (1-2), 403–410, 2006.
  • [7] S.M. Belcastro and G.J. Sherman, Counting centralizers in finite groups, Math. Mag. 67 (5), 366–374, 1994.
  • [8] Gr.G. Călugăreanu, The total number of subgroups of a finite Abelian group, Sci. Math. Jpn. 60 (1), 157–167, 2004.
  • [9] J. Dutta, A characterization of 4-centralizer groups, Chin. J. Math. (N.Y.) Article ID:871072, 2 pages, 2013.
  • [10] J. Dutta, On a problem posed by Belcastro and Sherman, Kyungpook Math. J. 56 (1), 121–123, 2016.
  • [11] M. Golasiński and D.L. Goncalves, On automorphisms of finite Abelian p-groups, Math. Slovaca 58 (4), 405–412, 2008.
  • [12] M.M. Nasrabadi and A. Gholamian, On finite n-Acentralizers groups, Comm. Algebra 43 (2), 378–383, 2015.
  • [13] R.K. Nath, Commutativity degree of a class of finite groups and consequences, Bull. Aust. Math. Soc. 88 (3), 448–452, 2013.
  • [14] R. Schmidt, Subgroup lattices of groups, De Gruyter Exp. Math., 14. Walter de Gruyter, 1994.
  • [15] M. Zarrin, On element-centralizers in finite groups, Arch. Math. (Basel) 93, 497–503, 2009.

Acentralizers of Abelian groups of rank 2

Year 2020, Volume: 49 Issue: 1, 273 - 281, 06.02.2020
https://doi.org/10.15672/hujms.546988

Abstract

Let $G$ be a group. The Acentralizer of an automorphism $\alpha$ of $G$, is the subgroup of fixed points of $\alpha$, i.e.,  $C_G(\alpha)= \{g\in G \mid \alpha(g)=g\}$. We show that if $G$ is a  finite  Abelian  $p$-group of rank $2$, where $p$ is an odd prime, then the number of Acentralizers of $G$ is exactly the number of subgroups of $G$. More precisely, we show that for each  subgroup $U$ of $G$, there exists an automorphism $\alpha$ of $G$ such that $C_G(\alpha)=U$. Also we find the Acentralizers of infinite two-generator Abelian groups.

References

  • [1] A. Abdollahi, S.M.J. Amiri, and A.M. Hassanabadi, Groups with specific number of centralizers, Houston J. Math. 33 (1), 43–57, 2007.
  • [2] S.M.J. Amiri and H. Rostami, Centralizers and the maximum size of the pairwise noncommuting elements in finite groups, Hacet. J. Math Stat. 46 (2), 193–198, 2017.
  • [3] A.R. Ashrafi, On finite groups with a given number of centralizers, Algebra Colloq. 7 (2), 139–146, 2000.
  • [4] A.R. Ashrafi, Counting the centralizers of some finite groups, J. Korean Comput. Appl. Math. 7 (1), 115–124, 2000.
  • [5] A.R. Ashrafi and B. Taeri, On finite groups with a certain number of centralizers, J. Appl. Math. Comput. 17 (12), 217–227, 2005.
  • [6] A.R. Ashrafi and B. Taeri, On finite groups with exactly seven element centralizers, J. Appl. Math. Comput. 22 (1-2), 403–410, 2006.
  • [7] S.M. Belcastro and G.J. Sherman, Counting centralizers in finite groups, Math. Mag. 67 (5), 366–374, 1994.
  • [8] Gr.G. Călugăreanu, The total number of subgroups of a finite Abelian group, Sci. Math. Jpn. 60 (1), 157–167, 2004.
  • [9] J. Dutta, A characterization of 4-centralizer groups, Chin. J. Math. (N.Y.) Article ID:871072, 2 pages, 2013.
  • [10] J. Dutta, On a problem posed by Belcastro and Sherman, Kyungpook Math. J. 56 (1), 121–123, 2016.
  • [11] M. Golasiński and D.L. Goncalves, On automorphisms of finite Abelian p-groups, Math. Slovaca 58 (4), 405–412, 2008.
  • [12] M.M. Nasrabadi and A. Gholamian, On finite n-Acentralizers groups, Comm. Algebra 43 (2), 378–383, 2015.
  • [13] R.K. Nath, Commutativity degree of a class of finite groups and consequences, Bull. Aust. Math. Soc. 88 (3), 448–452, 2013.
  • [14] R. Schmidt, Subgroup lattices of groups, De Gruyter Exp. Math., 14. Walter de Gruyter, 1994.
  • [15] M. Zarrin, On element-centralizers in finite groups, Arch. Math. (Basel) 93, 497–503, 2009.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Zahar Mozafar This is me 0000-0002-1039-7975

Bijan Taeri This is me 0000-0001-7345-1281

Publication Date February 6, 2020
Published in Issue Year 2020 Volume: 49 Issue: 1

Cite

APA Mozafar, Z., & Taeri, B. (2020). Acentralizers of Abelian groups of rank 2. Hacettepe Journal of Mathematics and Statistics, 49(1), 273-281. https://doi.org/10.15672/hujms.546988
AMA Mozafar Z, Taeri B. Acentralizers of Abelian groups of rank 2. Hacettepe Journal of Mathematics and Statistics. February 2020;49(1):273-281. doi:10.15672/hujms.546988
Chicago Mozafar, Zahar, and Bijan Taeri. “Acentralizers of Abelian Groups of Rank 2”. Hacettepe Journal of Mathematics and Statistics 49, no. 1 (February 2020): 273-81. https://doi.org/10.15672/hujms.546988.
EndNote Mozafar Z, Taeri B (February 1, 2020) Acentralizers of Abelian groups of rank 2. Hacettepe Journal of Mathematics and Statistics 49 1 273–281.
IEEE Z. Mozafar and B. Taeri, “Acentralizers of Abelian groups of rank 2”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 1, pp. 273–281, 2020, doi: 10.15672/hujms.546988.
ISNAD Mozafar, Zahar - Taeri, Bijan. “Acentralizers of Abelian Groups of Rank 2”. Hacettepe Journal of Mathematics and Statistics 49/1 (February 2020), 273-281. https://doi.org/10.15672/hujms.546988.
JAMA Mozafar Z, Taeri B. Acentralizers of Abelian groups of rank 2. Hacettepe Journal of Mathematics and Statistics. 2020;49:273–281.
MLA Mozafar, Zahar and Bijan Taeri. “Acentralizers of Abelian Groups of Rank 2”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 1, 2020, pp. 273-81, doi:10.15672/hujms.546988.
Vancouver Mozafar Z, Taeri B. Acentralizers of Abelian groups of rank 2. Hacettepe Journal of Mathematics and Statistics. 2020;49(1):273-81.