Year 2020, Volume 49 , Issue 1, Pages 389 - 398 2020-02-06

Generalized autocommuting probability of a finite group relative to its subgroups

Parama DUTTA [1] , Rajat NATH [2]


Let $H \subseteq K$ be two subgroups of a finite group $G$  and $\mathrm{Aut}(K)$ the automorphism group of  $K$. In this paper, we consider the generalized autocommuting probability of $G$ relative to its subgroups $H$ and $K$, denoted by  ${Pr}_g(H,\mathrm{Aut}(K))$, which is the probability  that the autocommutator of a randomly chosen pair of elements, one from $H$ and the other from $\mathrm{Aut}(K)$, is equal to a given element $g \in K$. We study several properties as well as obtain several computing formulae of  this probability. As applications of the computing formulae, we also obtain several  bounds for ${Pr}_g(H,\mathrm{Aut}(K))$ and characterizations of some finite groups through ${Pr}_g(H,\mathrm{Aut}(K))$.
automorphism group, autocommuting probability, autoisoclinism
  • [1] H. Arora and R. Karan, What is the probability an automorphism fixes a group element?, Comm. Algebra, 45(3), 1141–1150, 2017.
  • [2] A.K. Das and R.K. Nath, On generalized relative commutativity degree of a finite group, Int. Electron. J. Algebra, 7, 140–151, 2010.
  • [3] P. Dutta and R.K. Nath, Autocommuting probabilty of a finite group, Comm. Algebra, 46 (3), 961–969, 2018.
  • [4] P. Dutta and R.K. Nath, On generalized autocommutativity degree of finite groups, Hacet. J. Math. Stat. 48 (2), 472–478, 2019.
  • [5] P. Hall, The classification of prime power groups, J. Reine Angew. Math. 182, 130– 141, 1940.
  • [6] P.V. Hegarty, The absolute centre of a group, J. Algebra, 169 (3), 929–935, 1994.
  • [7] C.J. Hillar and D.L. Rhea, Automorphism of finite abelian groups, Amer. Math. Monthly, 114 (10), 917–923, 2007.
  • [8] M.R.R. Moghaddam, M.J. Sadeghifard and M. Eshrati, Some properties of autoisoclinism of groups, Fifth International group theory conference, Islamic Azad University, Mashhad, Iran, 13-15 March 2013.
  • [9] M.R.R. Moghaddam, F. Saeedi and E. Khamseh, The probability of an automorphism fixing a subgroup element of a finite group, Asian-Eur. J. Math. 4 (2), 301–308, 2011.
  • [10] R.K. Nath and A.K. Das, On a lower bound of commutativity degree, Rend. Circ. Mat. Palermo, 59 (1), 137–142, 2010.
  • [11] R.K. Nath and M.K. Yadav, Some results on relative commutativity degree, Rend. Circ. Mat. Palermo, 64 (2), 229–239, 2015.
  • [12] M.R. Rismanchian and Z. Sepehrizadeh, Autoisoclinism classes and autocommutativity degrees of finite groups, Hacet. J. Math. Stat. 44 (4), 893–899, 2015.
  • [13] G.J. Sherman, What is the probability an automorphism fixes a group element?, Amer. Math. Monthly, 82, 261–264, 1975.
Primary Language en
Subjects Mathematics
Journal Section Mathematics
Authors

Orcid: 0000-0002-6984-9817
Author: Parama DUTTA
Institution: Tezpur University
Country: India


Orcid: 0000-0003-4766-6523
Author: Rajat NATH
Institution: Tezpur University
Country: India


Dates

Publication Date : February 6, 2020

Bibtex @research article { hujms568258, journal = {Hacettepe Journal of Mathematics and Statistics}, issn = {2651-477X}, eissn = {2651-477X}, address = {}, publisher = {Hacettepe University}, year = {2020}, volume = {49}, pages = {389 - 398}, doi = {10.15672/hujms.568258}, title = {Generalized autocommuting probability of a finite group relative to its subgroups}, key = {cite}, author = {DUTTA, Parama and NATH, Rajat} }
APA DUTTA, P , NATH, R . (2020). Generalized autocommuting probability of a finite group relative to its subgroups. Hacettepe Journal of Mathematics and Statistics , 49 (1) , 389-398 . DOI: 10.15672/hujms.568258
MLA DUTTA, P , NATH, R . "Generalized autocommuting probability of a finite group relative to its subgroups". Hacettepe Journal of Mathematics and Statistics 49 (2020 ): 389-398 <https://dergipark.org.tr/en/pub/hujms/issue/52287/568258>
Chicago DUTTA, P , NATH, R . "Generalized autocommuting probability of a finite group relative to its subgroups". Hacettepe Journal of Mathematics and Statistics 49 (2020 ): 389-398
RIS TY - JOUR T1 - Generalized autocommuting probability of a finite group relative to its subgroups AU - Parama DUTTA , Rajat NATH Y1 - 2020 PY - 2020 N1 - doi: 10.15672/hujms.568258 DO - 10.15672/hujms.568258 T2 - Hacettepe Journal of Mathematics and Statistics JF - Journal JO - JOR SP - 389 EP - 398 VL - 49 IS - 1 SN - 2651-477X-2651-477X M3 - doi: 10.15672/hujms.568258 UR - https://doi.org/10.15672/hujms.568258 Y2 - 2018 ER -
EndNote %0 Hacettepe Journal of Mathematics and Statistics Generalized autocommuting probability of a finite group relative to its subgroups %A Parama DUTTA , Rajat NATH %T Generalized autocommuting probability of a finite group relative to its subgroups %D 2020 %J Hacettepe Journal of Mathematics and Statistics %P 2651-477X-2651-477X %V 49 %N 1 %R doi: 10.15672/hujms.568258 %U 10.15672/hujms.568258
ISNAD DUTTA, Parama , NATH, Rajat . "Generalized autocommuting probability of a finite group relative to its subgroups". Hacettepe Journal of Mathematics and Statistics 49 / 1 (February 2020): 389-398 . https://doi.org/10.15672/hujms.568258
AMA DUTTA P , NATH R . Generalized autocommuting probability of a finite group relative to its subgroups. Hacettepe Journal of Mathematics and Statistics. 2020; 49(1): 389-398.
Vancouver DUTTA P , NATH R . Generalized autocommuting probability of a finite group relative to its subgroups. Hacettepe Journal of Mathematics and Statistics. 2020; 49(1): 398-389.