Research Article
BibTex RIS Cite
Year 2020, Volume: 49 Issue: 1, 409 - 415, 06.02.2020
https://doi.org/10.15672/hujms.568290

Abstract

References

  • [1] Z. Chen and Z. Liu, Omni-Lie algeboids, J. Geom. Phys. 60 (5), 799–808, 2010.
  • [2] Z. Chen, Z. Liu and Y. Sheng, Dirac structures of omni-Lie algeboids, Int. J. Math. 22 (8), 1163–1185, 2008.
  • [3] Z. Liu, Some remarks on Dirac structures and Possion reductions, Poisson Geometry Banach Center Publ. 51, 165–173, 2000.
  • [4] J. Loday, Une version non commutative des alg`ebres de Lie: les alg`ebres de Leibniz, Enseign. Math. 39 (2), 269–293, 1993.
  • [5] D. Roytenberg and A. Weinstein, Courant algeboids and strongly homotopy Lie algebras, Lett. Math. Phys. 46 (1), 81–93, 1998.
  • [6] Y. Sheng, Z. Liu and C. Zhu, Omni-Lie 2-algebras and their Dirac structures, J. Geom. Phys. 61 (2), 560–575, 2010.
  • [7] A. Weinstein, Omni-Lie algebras, RIMS Kokyuroku, 1176, 95–102, 2000.
  • [8] T. Zhang and Z. Liu, Omni-Lie superalgebras and Lie 2-superalgebras, Front Math. China, 9 (5), 1195–1210, 2014.

Generalized omni-Lie algebras

Year 2020, Volume: 49 Issue: 1, 409 - 415, 06.02.2020
https://doi.org/10.15672/hujms.568290

Abstract

We introduce the notion of generalized omni-Lie algebras from omni-Lie algebras constructed by Weinstein. We prove that there is a one-to-one correspondence between Dirac structures of a generalized omni-Lie algebra and Lie structures on its linear space.

References

  • [1] Z. Chen and Z. Liu, Omni-Lie algeboids, J. Geom. Phys. 60 (5), 799–808, 2010.
  • [2] Z. Chen, Z. Liu and Y. Sheng, Dirac structures of omni-Lie algeboids, Int. J. Math. 22 (8), 1163–1185, 2008.
  • [3] Z. Liu, Some remarks on Dirac structures and Possion reductions, Poisson Geometry Banach Center Publ. 51, 165–173, 2000.
  • [4] J. Loday, Une version non commutative des alg`ebres de Lie: les alg`ebres de Leibniz, Enseign. Math. 39 (2), 269–293, 1993.
  • [5] D. Roytenberg and A. Weinstein, Courant algeboids and strongly homotopy Lie algebras, Lett. Math. Phys. 46 (1), 81–93, 1998.
  • [6] Y. Sheng, Z. Liu and C. Zhu, Omni-Lie 2-algebras and their Dirac structures, J. Geom. Phys. 61 (2), 560–575, 2010.
  • [7] A. Weinstein, Omni-Lie algebras, RIMS Kokyuroku, 1176, 95–102, 2000.
  • [8] T. Zhang and Z. Liu, Omni-Lie superalgebras and Lie 2-superalgebras, Front Math. China, 9 (5), 1195–1210, 2014.
There are 8 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Chang Sun This is me 0000-0003-1209-895X

Liangyun Chen 0000-0002-2941-1087

Publication Date February 6, 2020
Published in Issue Year 2020 Volume: 49 Issue: 1

Cite

APA Sun, C., & Chen, L. (2020). Generalized omni-Lie algebras. Hacettepe Journal of Mathematics and Statistics, 49(1), 409-415. https://doi.org/10.15672/hujms.568290
AMA Sun C, Chen L. Generalized omni-Lie algebras. Hacettepe Journal of Mathematics and Statistics. February 2020;49(1):409-415. doi:10.15672/hujms.568290
Chicago Sun, Chang, and Liangyun Chen. “Generalized Omni-Lie Algebras”. Hacettepe Journal of Mathematics and Statistics 49, no. 1 (February 2020): 409-15. https://doi.org/10.15672/hujms.568290.
EndNote Sun C, Chen L (February 1, 2020) Generalized omni-Lie algebras. Hacettepe Journal of Mathematics and Statistics 49 1 409–415.
IEEE C. Sun and L. Chen, “Generalized omni-Lie algebras”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 1, pp. 409–415, 2020, doi: 10.15672/hujms.568290.
ISNAD Sun, Chang - Chen, Liangyun. “Generalized Omni-Lie Algebras”. Hacettepe Journal of Mathematics and Statistics 49/1 (February 2020), 409-415. https://doi.org/10.15672/hujms.568290.
JAMA Sun C, Chen L. Generalized omni-Lie algebras. Hacettepe Journal of Mathematics and Statistics. 2020;49:409–415.
MLA Sun, Chang and Liangyun Chen. “Generalized Omni-Lie Algebras”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 1, 2020, pp. 409-15, doi:10.15672/hujms.568290.
Vancouver Sun C, Chen L. Generalized omni-Lie algebras. Hacettepe Journal of Mathematics and Statistics. 2020;49(1):409-15.