Year 2020, Volume 49 , Issue 1, Pages 416 - 424 2020-02-06

Classes of harmonic starlike functions defined by Sălăgean-type $q$-differential operators

Jay M. JAHANGİRİ [1] , Gangadharan MURUGUSUNDARAMOORTHY [2] , Kaliappan VİJAYA [3]


Sufficient and necessary coefficient bounds, extreme points of closed convex hulls, and distortion theorems are determined for a family of harmonic starlike functions of complex order involving Sălăgean-type $q$-differential operators.
Harmonic univalent functions, q-calculus, Sălăgean-type differential operators
  • [1] A. Aral, V. Gupta and R.P. Agarwal, Applications of q-calculus in operator theory, Springer, New York, 2013.
  • [2] Y. Avci and E. Zlotkiewicz, On harmonic univalent mappings, Ann. Univ. Mariae Curie- Sklodowska Sect. A, 44, 1–7, 1990.
  • [3] T. Bulboaca, M.A. Nasr and G.F. Sălăgean, A generalization of some classes of starlike functions of complex order, Mathematica (Cluj), 34 (57), 113–118, 1992.
  • [4] J. Clunie and T. Sheil-Small, Harmonic univalent Functions, Ann. Acad. Aci. Fenn. Ser. A.I. Math. 9, 3–25, 1984.
  • [5] M. Govindaraj and S. Sivasubramanian, On a class of analytic functions related to conic domains involving q-calculus, Anal. Math. 43(3)(5), 475–487, 2017.
  • [6] S.A. Halim and A. Janteng, Harmonic functions starlike of complex order, Proc. Int. Symp. on New Development of Geometric function Theory and its Applications, 132–140, 2008.
  • [7] F.H. Jackson, On q-functions and a certain difference operator, Trans. Roy. Soc. Edinburgh, 46, 253–281, 1908.
  • [8] J.M. Jahangiri, Coefficient bounds and univalence criteria for harmonic functions with negative coefficients, Ann. Univ. Mariae Curie-Sk lodowska Sect. A, 5 (2), 57– 66, 1998.
  • [9] J.M. Jahangiri, Harmonic functions starlike in the unit disc, J. Math. Anal. Appl. 235, 470–477, 1999.
  • [10] J.M. Jahangiri, Harmonic univalent functions defined by q− calculus operators, Inter. J. Math. Anal. Appl. 5 (2), 39–43, 2018.
  • [11] J.M. Jahangiri, G. Murugusundaramoorthy and K. Vijaya, Sălăgean-Type harmonic univalent functions, Southwest J. Pure Appl. Math. 2, 77–82, 2002.
  • [12] J.M. Jahangiri, G. Murugusundaramoorthy and K. Vijaya, Starlikeness of Rucheweyh type harmonic univalent functions, J. Indian Acad. Math. 26, 191–200, 2004.
  • [13] S. Kanas, and D. Răducanu, Some subclass of analytic functions related to conic domains, Math. Slovaca, 64 (5), 1183–1196, 2014.
  • [14] T. Rosy, B.A. Stephen, K.G. Subramanian and J.M. Jagangiri, Goodman-Rønning type harmonic univalent functions, Kyungpook Math. J. 41, 45–54, 2001.
  • [15] G.F. Sălăgean, Subclasses of univalent functions, Springers-Verlog 1013, 362–372, 1983.
  • [16] H. Silverman, Harmonic univalent functions with negative coefficients , J. Math. Anal. Appl. 220, 283–289, 1998.
Primary Language en
Subjects Mathematics
Journal Section Mathematics
Authors

Orcid: 0000-0002-5231-3530
Author: Jay M. JAHANGİRİ
Institution: Kent State University
Country: United States


Orcid: 0000-0001-8285-6619
Author: Gangadharan MURUGUSUNDARAMOORTHY
Institution: Vellore Institute of Technology
Country: India


Orcid: 0000-0002-3216-7038
Author: Kaliappan VİJAYA
Institution: Vellore Institute of Technology
Country: India


Dates

Publication Date : February 6, 2020

Bibtex @research article { hujms568306, journal = {Hacettepe Journal of Mathematics and Statistics}, issn = {2651-477X}, eissn = {2651-477X}, address = {}, publisher = {Hacettepe University}, year = {2020}, volume = {49}, pages = {416 - 424}, doi = {10.15672/hujms.568306}, title = {Classes of harmonic starlike functions defined by Sălăgean-type \$q\$-differential operators}, key = {cite}, author = {JAHANGİRİ, Jay M. and MURUGUSUNDARAMOORTHY, Gangadharan and VİJAYA, Kaliappan} }
APA JAHANGİRİ, J , MURUGUSUNDARAMOORTHY, G , VİJAYA, K . (2020). Classes of harmonic starlike functions defined by Sălăgean-type $q$-differential operators. Hacettepe Journal of Mathematics and Statistics , 49 (1) , 416-424 . DOI: 10.15672/hujms.568306
MLA JAHANGİRİ, J , MURUGUSUNDARAMOORTHY, G , VİJAYA, K . "Classes of harmonic starlike functions defined by Sălăgean-type $q$-differential operators". Hacettepe Journal of Mathematics and Statistics 49 (2020 ): 416-424 <https://dergipark.org.tr/en/pub/hujms/issue/52287/568306>
Chicago JAHANGİRİ, J , MURUGUSUNDARAMOORTHY, G , VİJAYA, K . "Classes of harmonic starlike functions defined by Sălăgean-type $q$-differential operators". Hacettepe Journal of Mathematics and Statistics 49 (2020 ): 416-424
RIS TY - JOUR T1 - Classes of harmonic starlike functions defined by Sălăgean-type $q$-differential operators AU - Jay M. JAHANGİRİ , Gangadharan MURUGUSUNDARAMOORTHY , Kaliappan VİJAYA Y1 - 2020 PY - 2020 N1 - doi: 10.15672/hujms.568306 DO - 10.15672/hujms.568306 T2 - Hacettepe Journal of Mathematics and Statistics JF - Journal JO - JOR SP - 416 EP - 424 VL - 49 IS - 1 SN - 2651-477X-2651-477X M3 - doi: 10.15672/hujms.568306 UR - https://doi.org/10.15672/hujms.568306 Y2 - 2018 ER -
EndNote %0 Hacettepe Journal of Mathematics and Statistics Classes of harmonic starlike functions defined by Sălăgean-type $q$-differential operators %A Jay M. JAHANGİRİ , Gangadharan MURUGUSUNDARAMOORTHY , Kaliappan VİJAYA %T Classes of harmonic starlike functions defined by Sălăgean-type $q$-differential operators %D 2020 %J Hacettepe Journal of Mathematics and Statistics %P 2651-477X-2651-477X %V 49 %N 1 %R doi: 10.15672/hujms.568306 %U 10.15672/hujms.568306
ISNAD JAHANGİRİ, Jay M. , MURUGUSUNDARAMOORTHY, Gangadharan , VİJAYA, Kaliappan . "Classes of harmonic starlike functions defined by Sălăgean-type $q$-differential operators". Hacettepe Journal of Mathematics and Statistics 49 / 1 (February 2020): 416-424 . https://doi.org/10.15672/hujms.568306
AMA JAHANGİRİ J , MURUGUSUNDARAMOORTHY G , VİJAYA K . Classes of harmonic starlike functions defined by Sălăgean-type $q$-differential operators. Hacettepe Journal of Mathematics and Statistics. 2020; 49(1): 416-424.
Vancouver JAHANGİRİ J , MURUGUSUNDARAMOORTHY G , VİJAYA K . Classes of harmonic starlike functions defined by Sălăgean-type $q$-differential operators. Hacettepe Journal of Mathematics and Statistics. 2020; 49(1): 424-416.