Research Article
BibTex RIS Cite
Year 2020, Volume: 49 Issue: 2, 608 - 616, 02.04.2020
https://doi.org/10.15672/hujms.478373

Abstract

References

  • [1] F.A.A. Almahdi, K. Louartiti, and M. Tamekkante, The trace graph of the matrix ring over a finite commutative ring, Acta Math. Hungar. 156 (1), 132–144, 2018.
  • [2] D.F. Anderson and P.S. Livingston, The zero divisor graph of a commutative ring, J. Algebra 217, 434–447, 1999.
  • [3] I. Beck, Coloring of commutative rings, J. Algebra 116, 208–226, 1988.
  • [4] G. Chartrand, O.R. Oellermann, Applied and algorithmic graph theory, McGraw-Hill, Inc., New York, 1993.
  • [5] I.N. Herstein, Noncommutative rings, Carus Monographs in Mathematics, Math. Assoc. of America, 1968.
  • [6] I. Kaplansky, Commutative Rings, University of Chicago Press, Chicago, 1974.
  • [7] T.Y. Lam, A first course in noncommutative rings, Graduate Texts in Mathematics, Springer-Verlag, New York 2001.
  • [8] H.R. Maimani, M.R. Pournaki, and S. Yassemi, Zero-divisor graph with respect to an ideal, Comm. Algebra 34 (3), 923–929, 2006.
  • [9] S.P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Comm. Algebra 31, 4425–4443, 2003.
  • [10] M. Sivagami and T. Tamizh Chelvam, On the trace graph of matrices, Acta Math. Hungar. 158 (1), 235–250, 2019, https://doi.org/10.1007/s10474-019-00918-5.
  • [11] D.B. West, Introduction to graph theory, Prentice Hall, 2001.

Ideal based trace graph of matrices

Year 2020, Volume: 49 Issue: 2, 608 - 616, 02.04.2020
https://doi.org/10.15672/hujms.478373

Abstract

Let $R$ be a commutative ring and $M_n(R)$ be the set of all $n\times n$ matrices over $R$ where $n\geq 2.$ The trace graph of the matrix ring $M_n(R)$ with respect to an ideal $I$ of $R,$ denoted by $\Gamma_{I^t}(M_n(R)),$ is the simple undirected graph with vertex set $M_n(R)\setminus M_n(I)$ and two distinct vertices $A$ and $B$ are adjacent if and only if Tr$(AB) \in I.$ Here Tr$(A)$ represents the trace of the matrix $A.$ In this paper, we exhibit some properties and structure of $\Gamma_{I^t}(M_n(R)).$

References

  • [1] F.A.A. Almahdi, K. Louartiti, and M. Tamekkante, The trace graph of the matrix ring over a finite commutative ring, Acta Math. Hungar. 156 (1), 132–144, 2018.
  • [2] D.F. Anderson and P.S. Livingston, The zero divisor graph of a commutative ring, J. Algebra 217, 434–447, 1999.
  • [3] I. Beck, Coloring of commutative rings, J. Algebra 116, 208–226, 1988.
  • [4] G. Chartrand, O.R. Oellermann, Applied and algorithmic graph theory, McGraw-Hill, Inc., New York, 1993.
  • [5] I.N. Herstein, Noncommutative rings, Carus Monographs in Mathematics, Math. Assoc. of America, 1968.
  • [6] I. Kaplansky, Commutative Rings, University of Chicago Press, Chicago, 1974.
  • [7] T.Y. Lam, A first course in noncommutative rings, Graduate Texts in Mathematics, Springer-Verlag, New York 2001.
  • [8] H.R. Maimani, M.R. Pournaki, and S. Yassemi, Zero-divisor graph with respect to an ideal, Comm. Algebra 34 (3), 923–929, 2006.
  • [9] S.P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Comm. Algebra 31, 4425–4443, 2003.
  • [10] M. Sivagami and T. Tamizh Chelvam, On the trace graph of matrices, Acta Math. Hungar. 158 (1), 235–250, 2019, https://doi.org/10.1007/s10474-019-00918-5.
  • [11] D.B. West, Introduction to graph theory, Prentice Hall, 2001.
There are 11 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Tamizh Chelvam Thirugnanam 0000-0002-1878-7847

M. Sivagami This is me 0000-0002-9624-7627

Publication Date April 2, 2020
Published in Issue Year 2020 Volume: 49 Issue: 2

Cite

APA Thirugnanam, T. C., & Sivagami, M. (2020). Ideal based trace graph of matrices. Hacettepe Journal of Mathematics and Statistics, 49(2), 608-616. https://doi.org/10.15672/hujms.478373
AMA Thirugnanam TC, Sivagami M. Ideal based trace graph of matrices. Hacettepe Journal of Mathematics and Statistics. April 2020;49(2):608-616. doi:10.15672/hujms.478373
Chicago Thirugnanam, Tamizh Chelvam, and M. Sivagami. “Ideal Based Trace Graph of Matrices”. Hacettepe Journal of Mathematics and Statistics 49, no. 2 (April 2020): 608-16. https://doi.org/10.15672/hujms.478373.
EndNote Thirugnanam TC, Sivagami M (April 1, 2020) Ideal based trace graph of matrices. Hacettepe Journal of Mathematics and Statistics 49 2 608–616.
IEEE T. C. Thirugnanam and M. Sivagami, “Ideal based trace graph of matrices”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 2, pp. 608–616, 2020, doi: 10.15672/hujms.478373.
ISNAD Thirugnanam, Tamizh Chelvam - Sivagami, M. “Ideal Based Trace Graph of Matrices”. Hacettepe Journal of Mathematics and Statistics 49/2 (April 2020), 608-616. https://doi.org/10.15672/hujms.478373.
JAMA Thirugnanam TC, Sivagami M. Ideal based trace graph of matrices. Hacettepe Journal of Mathematics and Statistics. 2020;49:608–616.
MLA Thirugnanam, Tamizh Chelvam and M. Sivagami. “Ideal Based Trace Graph of Matrices”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 2, 2020, pp. 608-16, doi:10.15672/hujms.478373.
Vancouver Thirugnanam TC, Sivagami M. Ideal based trace graph of matrices. Hacettepe Journal of Mathematics and Statistics. 2020;49(2):608-16.