Research Article
BibTex RIS Cite
Year 2020, Volume: 49 Issue: 2, 578 - 585, 02.04.2020
https://doi.org/10.15672/hujms.568378

Abstract

References

  • [1] A. Ali, B. Dhara, S. Khan and F. Ali, Multiplicative (generalized)-derivations and left ideals in semiprime rings, Hacettepe J. Math. Stat. 44 (6), 1293–1306, 2015.
  • [2] H.E. Bell and M.N. Daif, On centrally-extended maps on rings, Beitrage Algebra Geom. Article No. 244, 1–8, 2015.
  • [3] B. Dhara and S. Ali, On multiplicative (generalized)-derivations in prime and semiprime rings, Aequat. Math. 86 (1-2), 65–79, 2013.
  • [4] C. Lanski, An Engel condition with derivation for left ideals, Proc. Amer. Math. Soc. 125 (2), 339–345, 1997.
  • [5] M.S. Tammam El-Sayiad, N.M. Muthana and Z.S. Alkhamisi, On rings with some kinds of centrally-extended maps, Beitr¨age Algebra Geom. Article No. 274, 1–10, 2015.

On centrally-extended multiplicative (generalized)-$(\alpha,\beta)$-derivations in semiprime rings

Year 2020, Volume: 49 Issue: 2, 578 - 585, 02.04.2020
https://doi.org/10.15672/hujms.568378

Abstract

Let $R$ be a ring with center $Z$ and $\alpha$, $\beta$ and $d$ mappings of $R$. A mapping $F$ of $R$ is called a centrally-extended multiplicative (generalized)-$(\alpha,\beta)$-derivation associated with $d$ if $F(xy)-F(x)\alpha(y)-\beta(x)d(y)\in Z$ for all $x, y \in R$. The objective of the present paper is to study the following conditions: (i) $F(xy)\pm \beta(x)G(y)\in Z$, (ii) $F(xy)\pm g(x)\alpha(y)\in Z$ and (iii) $F(xy)\pm g(y)\alpha(x)\in Z$ for all $x,y$ in some appropriate subsets of $R$, where $G$ is a multiplicative $($generalized$)$-$(\alpha,\beta)$-derivation of $R$ associated with the map $g$ on $R$.

References

  • [1] A. Ali, B. Dhara, S. Khan and F. Ali, Multiplicative (generalized)-derivations and left ideals in semiprime rings, Hacettepe J. Math. Stat. 44 (6), 1293–1306, 2015.
  • [2] H.E. Bell and M.N. Daif, On centrally-extended maps on rings, Beitrage Algebra Geom. Article No. 244, 1–8, 2015.
  • [3] B. Dhara and S. Ali, On multiplicative (generalized)-derivations in prime and semiprime rings, Aequat. Math. 86 (1-2), 65–79, 2013.
  • [4] C. Lanski, An Engel condition with derivation for left ideals, Proc. Amer. Math. Soc. 125 (2), 339–345, 1997.
  • [5] M.S. Tammam El-Sayiad, N.M. Muthana and Z.S. Alkhamisi, On rings with some kinds of centrally-extended maps, Beitr¨age Algebra Geom. Article No. 274, 1–10, 2015.
There are 5 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Najat Muthana This is me 0000-0001-9929-2776

Zakeiah Alkhamisi This is me 0000-0001-8140-5015

Publication Date April 2, 2020
Published in Issue Year 2020 Volume: 49 Issue: 2

Cite

APA Muthana, N., & Alkhamisi, Z. (2020). On centrally-extended multiplicative (generalized)-$(\alpha,\beta)$-derivations in semiprime rings. Hacettepe Journal of Mathematics and Statistics, 49(2), 578-585. https://doi.org/10.15672/hujms.568378
AMA Muthana N, Alkhamisi Z. On centrally-extended multiplicative (generalized)-$(\alpha,\beta)$-derivations in semiprime rings. Hacettepe Journal of Mathematics and Statistics. April 2020;49(2):578-585. doi:10.15672/hujms.568378
Chicago Muthana, Najat, and Zakeiah Alkhamisi. “On Centrally-Extended Multiplicative (generalized)-$(\alpha,\beta)$-Derivations in Semiprime Rings”. Hacettepe Journal of Mathematics and Statistics 49, no. 2 (April 2020): 578-85. https://doi.org/10.15672/hujms.568378.
EndNote Muthana N, Alkhamisi Z (April 1, 2020) On centrally-extended multiplicative (generalized)-$(\alpha,\beta)$-derivations in semiprime rings. Hacettepe Journal of Mathematics and Statistics 49 2 578–585.
IEEE N. Muthana and Z. Alkhamisi, “On centrally-extended multiplicative (generalized)-$(\alpha,\beta)$-derivations in semiprime rings”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 2, pp. 578–585, 2020, doi: 10.15672/hujms.568378.
ISNAD Muthana, Najat - Alkhamisi, Zakeiah. “On Centrally-Extended Multiplicative (generalized)-$(\alpha,\beta)$-Derivations in Semiprime Rings”. Hacettepe Journal of Mathematics and Statistics 49/2 (April 2020), 578-585. https://doi.org/10.15672/hujms.568378.
JAMA Muthana N, Alkhamisi Z. On centrally-extended multiplicative (generalized)-$(\alpha,\beta)$-derivations in semiprime rings. Hacettepe Journal of Mathematics and Statistics. 2020;49:578–585.
MLA Muthana, Najat and Zakeiah Alkhamisi. “On Centrally-Extended Multiplicative (generalized)-$(\alpha,\beta)$-Derivations in Semiprime Rings”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 2, 2020, pp. 578-85, doi:10.15672/hujms.568378.
Vancouver Muthana N, Alkhamisi Z. On centrally-extended multiplicative (generalized)-$(\alpha,\beta)$-derivations in semiprime rings. Hacettepe Journal of Mathematics and Statistics. 2020;49(2):578-85.