It is important to classify covering subgroups of the fundamental group of a topological space using their topological properties in the topologized fundamental group. In this paper, we introduce and study some topologies on the fundamental group and use them to classify coverings, semicoverings, and generalized coverings of a topological space. To do this, we use the concept of subgroup topology on a group and discuss their properties. In particular, we explore which of these topologies make the fundamental group a topological group. Moreover, we provide some examples of topological spaces to compare topologies of fundamental groups.
Semicovering Generalized covering Topological group Spanier topology Whisker topology Lasso topology Subgroup topology
Primary Language | English |
---|---|
Subjects | Mathematical Sciences |
Journal Section | Mathematics |
Authors | |
Publication Date | June 2, 2020 |
Published in Issue | Year 2020 Volume: 49 Issue: 3 |