Year 2020, Volume 49 , Issue 3, Pages 974 - 983 2020-06-02

A numerical algorithm for solving the Cauchy singular integral equation based on Hermite polynomials

Behrouz PARSA MOGHADDAM [1] , J. A. TENREİRO MACHADO [2] , Parisa SATTARİ SHAJARİ [3] , Zeynab SALAMAT MOSTAGHİM [4]


A numerical algorithm based on Hermite polynomials for solving the Cauchy singular integral equation in the general form is presented. The Hermite polynomial interpolation of unknown functions is first introduced. The proposed technique is then used for approximating the solution of the Cauchy singular integral equation. This approach requires the solution of a system of linear algebraic equations. Two examples demonstrate the effectiveness of the proposed method.
Cauchy singular integral equation, Hermite polynomials, Numerical schemes, Interpolation theory
  • [1] M.A. Abdou and A.A. Nasr, On the numerical treatment of the singular integral equation of the second kind, Appl. Math. Comput. 143 (2-3), 373–380, 2003.
  • [2] K. Al-Khaled and M. Alquran, Convergence and norm estimates of Hermite interpo- lation at zeros of Chevyshev polynomials, SpringerPlus, 5 (1), 2016.
  • [3] A.A. Badr, Integro-differential equation with Cauchy kernel, J. Comput. Appl. Math. 134 (1-2), 191–199, 2001.
  • [4] P. Baratella and A.P. Orsi, A new approach to the numerical solution of weakly singular Volterra integral equations, J. Comput. Appl. Math. 163 (2), 401–418, 2004.
  • [5] S. Bhattacharya and B.N. Mandal, Numerical solution of a singular integro- differential equation, Appl. Math. Comput. 195 (1), 346–350, 2008.
  • [6] A. Chakrabarti, Applied Singular Integral Equations, Science Publishers, 2011.
  • [7] Z. Chen and Y. Lin, The exact solution of a linear integral equation with weakly singular kernel, J. Math. Anal. Appl. 344 (2), 726–734, 2008.
  • [8] S.M.A. Darwish, Weakly singular functional-integral equation in infinite dimensional Banach spaces, Appl. Math. Comput. 136 (1), 123–129, 2003.
  • [9] R. Estrada and R.P. Kanwal, Singular integral equations, Springer Science & Business Media, 2012.
  • [10] M.A. Golberg, Numerical Solution of Integral Equations, Springer US, 1990.
  • [11] P. Karczmarek, D. Pylak, and M.A. Sheshko, Application of Jacobi polynomials to approximate solution of a singular integral equation with Cauchy kernel, Appl. Math. Comput. 181 (1), 694–707, 2006.
  • [12] F.K. Keshi, B.P. Moghaddam, and A. Aghili, A numerical approach for solving a class of variable-order fractional functional integral equations, Comput. Appl. Math. 37 (4), 4821–4834, 2018.
  • [13] N. Khorrami, A.S. Shamloo, and B.P. Moghaddam, Nystrom method for solution of fredholm integral equations of the second kind under interval data, J. Intell. Fuzzy Syst. 36 (3), 2807–2816, 2019.
  • [14] D. Kincaid and E.W. Cheney, Numerical Analysis: Mathematics of Scientific Com- puting, Am. Math. Soc. 2009.
  • [15] S. Kumar and A.L. Sangal, Numerical solution of singular integral equations using cubic spline interpolations, Indian J. Pure Appl. Math. 35 (3), 415–421, 2004.
  • [16] P.K. Kythe and P. Puri, Computational Methods for Linear Integral Equations, Birkhauser Boston, 2002.
  • [17] I. Lifanov, L. Poltavskii, and G. Vainikko, Hypersingular Integral Equations and Their Applications, CRC Press, 2003.
  • [18] B.N. Mandal and G.H. Bera, Approximate solution of a class of singular integral equations of second kind, J. Comput. Appl. Math. 206 (1), 189–195, 2007.
  • [19] B.P. Moghaddam and J.A. Tenreiro Machado, Extended algorithms for approximating variable order fractional derivatives with applications, J. Sci. Comput. 71 (3), 1351– 1374, 2016.
  • [20] B.P. Moghaddam and J.A. Tenreiro Machado, A computational approach for the so- lution of a class of variable-order fractional integro-differential equations with weakly singular kernels, Fract. Calc. Appl. Anal. 20 (4), 1023–1042, 2017.
  • [21] P. Mokhtary, B.P. Moghaddam, A.M. Lopes, and J.A. Tenreiro Machado, A computational approach for the non-smooth solution of non-linear weakly singular Volterra integral equation with proportional delay, Numer. Algorithms 1–20, 2019. doi:10.1007/s11075-019-00712-y.
  • [22] N.I. Muskhelishvili, Singular integral equations: Boundary problems of functions the- ory and their application to mathematical physics, P. Noordhoff, 1953.
  • [23] A. Polyanin, Handbook of Integral Equations, CRC Press, 1998.
  • [24] A. Setia, Numerical solution of various cases of Cauchy type singular integral equa- tion, Appl. Math. Comput. 230, 200–207, 2014.
  • [25] M. Sheshko, Singular integral equations with Cauchy and Hilbert kernels and theirs approximated solutions, The Learned Society of the Catholic University of Lublin, Lublin, 2003.
  • [26] B.Q. Tang and X.F. Li, Solution of a class of Volterra integral equations with singular and weakly singular kernels, Appl. Math. Comput. 199 (2), 406–413, 2008.
  • [27] J.A. Tenreiro Machado, F. Mainardi, V. Kiryakova, and T. Atanacković, Fractional calculus: D’où venons-nous? Que sommes-nous? Où allons-nous?, Fract. Calc. Appl. Anal. 19 (5), 1074–1104, 2016.
  • [28] X. Jin, L.M. Keer, and Q. Wang, A practical method for singular integral equations of the second kind, Eng. Fract. Mech. 75 (5), 1005–1014, 2008.
Primary Language en
Subjects Mathematics
Journal Section Mathematics
Authors

Orcid: 0000-0003-4957-9028
Author: Behrouz PARSA MOGHADDAM (Primary Author)
Institution: University of Lahijan
Country: Iran


Orcid: 0000-0003-4274-4879
Author: J. A. TENREİRO MACHADO
Institution: Institute of Engineering, Porto
Country: Portugal


Orcid: 0000-0001-6014-4864
Author: Parisa SATTARİ SHAJARİ
Institution: University of Lahijan
Country: Iran


Orcid: 0000-0003-2352-976X
Author: Zeynab SALAMAT MOSTAGHİM
Institution: University of Lahijan
Country: Iran


Dates

Publication Date : June 2, 2020

Bibtex @research article { hujms474938, journal = {Hacettepe Journal of Mathematics and Statistics}, issn = {2651-477X}, eissn = {2651-477X}, address = {}, publisher = {Hacettepe University}, year = {2020}, volume = {49}, pages = {974 - 983}, doi = {10.15672/hujms.474938}, title = {A numerical algorithm for solving the Cauchy singular integral equation based on Hermite polynomials}, key = {cite}, author = {Parsa Moghaddam, Behrouz and Tenrei̇ro Machado, J. A. and Sattari̇ Shajari̇, Parisa and Salamat Mostaghi̇m, Zeynab} }
APA Parsa Moghaddam, B , Tenrei̇ro Machado, J , Sattari̇ Shajari̇, P , Salamat Mostaghi̇m, Z . (2020). A numerical algorithm for solving the Cauchy singular integral equation based on Hermite polynomials . Hacettepe Journal of Mathematics and Statistics , 49 (3) , 974-983 . DOI: 10.15672/hujms.474938
MLA Parsa Moghaddam, B , Tenrei̇ro Machado, J , Sattari̇ Shajari̇, P , Salamat Mostaghi̇m, Z . "A numerical algorithm for solving the Cauchy singular integral equation based on Hermite polynomials" . Hacettepe Journal of Mathematics and Statistics 49 (2020 ): 974-983 <https://dergipark.org.tr/en/pub/hujms/issue/54699/474938>
Chicago Parsa Moghaddam, B , Tenrei̇ro Machado, J , Sattari̇ Shajari̇, P , Salamat Mostaghi̇m, Z . "A numerical algorithm for solving the Cauchy singular integral equation based on Hermite polynomials". Hacettepe Journal of Mathematics and Statistics 49 (2020 ): 974-983
RIS TY - JOUR T1 - A numerical algorithm for solving the Cauchy singular integral equation based on Hermite polynomials AU - Behrouz Parsa Moghaddam , J. A. Tenrei̇ro Machado , Parisa Sattari̇ Shajari̇ , Zeynab Salamat Mostaghi̇m Y1 - 2020 PY - 2020 N1 - doi: 10.15672/hujms.474938 DO - 10.15672/hujms.474938 T2 - Hacettepe Journal of Mathematics and Statistics JF - Journal JO - JOR SP - 974 EP - 983 VL - 49 IS - 3 SN - 2651-477X-2651-477X M3 - doi: 10.15672/hujms.474938 UR - https://doi.org/10.15672/hujms.474938 Y2 - 2019 ER -
EndNote %0 Hacettepe Journal of Mathematics and Statistics A numerical algorithm for solving the Cauchy singular integral equation based on Hermite polynomials %A Behrouz Parsa Moghaddam , J. A. Tenrei̇ro Machado , Parisa Sattari̇ Shajari̇ , Zeynab Salamat Mostaghi̇m %T A numerical algorithm for solving the Cauchy singular integral equation based on Hermite polynomials %D 2020 %J Hacettepe Journal of Mathematics and Statistics %P 2651-477X-2651-477X %V 49 %N 3 %R doi: 10.15672/hujms.474938 %U 10.15672/hujms.474938
ISNAD Parsa Moghaddam, Behrouz , Tenrei̇ro Machado, J. A. , Sattari̇ Shajari̇, Parisa , Salamat Mostaghi̇m, Zeynab . "A numerical algorithm for solving the Cauchy singular integral equation based on Hermite polynomials". Hacettepe Journal of Mathematics and Statistics 49 / 3 (June 2020): 974-983 . https://doi.org/10.15672/hujms.474938
AMA Parsa Moghaddam B , Tenrei̇ro Machado J , Sattari̇ Shajari̇ P , Salamat Mostaghi̇m Z . A numerical algorithm for solving the Cauchy singular integral equation based on Hermite polynomials. Hacettepe Journal of Mathematics and Statistics. 2020; 49(3): 974-983.
Vancouver Parsa Moghaddam B , Tenrei̇ro Machado J , Sattari̇ Shajari̇ P , Salamat Mostaghi̇m Z . A numerical algorithm for solving the Cauchy singular integral equation based on Hermite polynomials. Hacettepe Journal of Mathematics and Statistics. 2020; 49(3): 974-983.

Authors of the Article
J. A. TENREİRO MACHADO [2]
Parisa SATTARİ SHAJARİ [3]
Zeynab SALAMAT MOSTAGHİM [4]