Year 2020, Volume 49 , Issue 3, Pages 1093 - 1106 2020-06-02

Ladders and fan graphs are cycle-antimagic

Martin BACA [1] , P. JEYANTHİ [2] , Narayanaperumal THİLLAİAMMAL MUTHURAJA [3] , Pothukutti Nadar SELVAGOPAL [4] , Andrea FENOVCIKOVA [5]


A simple graph $G=(V,E)$ admits an~$H$-covering if every edge in $E$ belongs to at least one subgraph of $G$ isomorphic to a given graph $H$. The graph $G$ admitting an $H$-covering is $(a,d)$-$H$-antimagic if there exists a~bijection $f:V\cup E\to\{1,2,\cdots,|V|+|E|\}$ such that, for all subgraphs $H'$ of $G$ isomorphic to $H$, the $H'$-weights, $wt_f(H')= \sum_{v\in V(H')} f(v) + \sum_{e\in E(H')} f(e)$, form an~arithmetic progression with the initial term $a$ and the common difference $d$. Such a labeling is called {\it super} if the smallest possible labels appear on the vertices. In this paper we prove the existence of super $(a,d)$-$H$-antimagic labelings of fan graphs and ladders for $H$ isomorphic to a cycle.
H-covering, cycle-antimagic labeling, fan graph, (super) $(a;d)$-$H$-antimagic total labeling, ladder, fan graph
  • [1] A. Ahmad, M. Bača, M. Lascsáková and A. Semaničová–Feňovčíková, Super magic and antimagic labelings of disjoint union of plane graphs, Sci. Int. 24 (1), 21–25, 2012.
  • [2] S. Arumugam, M. Miller, O. Phanalasy and J. Ryan, Antimagic labeling of generalized pyramid graphs, Acta Math. Sinica - English Series, 30, 283–290, 2014.
  • [3] M. Bača, L. Brankovic and A. Semaničová-Feňovčíková, Labelings of plane graphs containing Hamilton path, Acta Math. Sinica - English Series, 27 (4), 701–714, 2011.
  • [4] M. Bača, Z. Kimáková, A. Semaničová-Feňovčíková and M.A. Umar, Tree-antimagicness of disconnected graphs, Mathematical Problems in Engineering, 2015, Article ID 504251, 1–4, 2015.
  • [5] M. Bača and M. Miller, Super edge-antimagic graphs: A wealth of problems and some solutions, Brown Walker Press, Boca Raton, Florida, 2008.
  • [6] M. Bača, M. Miller, O. Phanalasy and A. Semaničová-Feňovčíková, Super d-antimagic labelings of disconnected plane graphs, Acta Math. Sinica - English Series, 26 (12), 2283–2294, 2010.
  • [7] M. Bača, M. Miller, J. Ryan and A. Semaničová-Feňovčíková, On H-antimagicness of disconnected graphs, Bull. Aust. Math. Soc. 94 (2), 201–207, 2016.
  • [8] M. Bača, A. Ovais, A. Semaničová-Feňovčíková and M.A. Umar, Fans are cycleantimagic, Australas. J. Combin. 68 (1), 94–105, 2017.
  • [9] H. Enomoto, A.S. Lladó, T. Nakamigawa and G. Ringel, Super edge-magic graphs, SUT J. Math. 34, 105–109, 1998.
  • [10] A. Gutiérrez and A.S. Lladó, Magic coverings, J. Combin. Math. Combin. Comput. 55, 43–56, 2005.
  • [11] N. Inayah, A.N.M. Salman and R. Simanjuntak, On (a, d)-H-antimagic coverings of graphs, J. Combin. Math. Combin. Comput. 71, 273–281, 2009.
  • [12] N. Inayah, R. Simanjuntak, A.N.M. Salman and K.I.A. Syuhada, On (a, d)-Hantimagic total labelings for shackles of a connected graph H, Australasian J. Combin. 57, 127–138, 2013.
  • [13] P. Jeyanthi, N.T. Muthuraja, A. Semaničová-Feňovčíková and S.J. Dharshikha, More classes of super cycle-antimagic graphs, Australas. J. Combin. 67 (1), 46–64, 2017.
  • [14] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13, 451–461, 1970.
  • [15] A. Lladó and J. Moragas, Cycle-magic graphs, Discrete Math. 307, 2925–2933, 2007.
  • [16] K.W. Lih, On magic and consecutive labelings of plane graphs, Utilitas Math. 24, 165–197, 1983.
  • [17] A.M. Marr and W.D. Wallis, Magic Graphs, Birkhäuser, New York, 2013.
  • [18] T.K. Maryati, A.N.M. Salman and E.T. Baskoro, Supermagic coverings of the disjoint union of graphs and amalgamations, Discrete Math. 313, 397–405, 2013.
  • [19] T.K. Maryati, A.N.M. Salman, E.T. Baskoro, J. Ryan and M. Miller, On Hsupermagic labelings for certain shackles and amalgamations of a connected graph, Utilitas Math. 83, 333–342, 2010.
  • [20] A.A.G. Ngurah, A.N.M. Salman and L. Susilowati, H-supermagic labelings of graphs, Discrete Math. 310, 1293–1300, 2010.
  • [21] A.N.M. Salman, A.A.G. Ngurah and N. Izzati, On (super)-edge-magic total labelings of subdivision of stars Sn, Utilitas Math. 81, 275–284, 2010.
  • [22] A. Semaničová–Feňovčíková, M. Bača, M. Lascsáková, M. Miller and J. Ryan, Wheels are cycle-antimagic, Electron. Notes Discrete Math. 48, 11–18, 2015.
  • [23] R. Simanjuntak, M. Miller and F. Bertault, Two new (a, d)-antimagic graph labelings, Proc. Eleventh Australas. Workshop Combin. Alg. (AWOCA), 179–189, 2000.
Primary Language en
Subjects Mathematics
Journal Section Mathematics
Authors

Orcid: 0000-0002-5758-0347
Author: Martin BACA
Institution: Technical University of Košice
Country: Slovakia


Orcid: 0000-0003-4349-164X
Author: P. JEYANTHİ
Institution: Govindammal Aditanar college for Women
Country: India


Orcid: 0000-0003-4243-0503
Author: Narayanaperumal THİLLAİAMMAL MUTHURAJA
Institution: Manonmaniam Sundaranar University PG Extension Centre
Country: India


Orcid: 0000-0001-6717-9816
Author: Pothukutti Nadar SELVAGOPAL
Institution: Al Musanna College of Technology
Country: Oman


Orcid: 0000-0002-8432-9836
Author: Andrea FENOVCIKOVA (Primary Author)
Institution: Technical University of Košice
Country: Slovakia


Dates

Publication Date : June 2, 2020

Bibtex @research article { hujms647228, journal = {Hacettepe Journal of Mathematics and Statistics}, issn = {2651-477X}, eissn = {2651-477X}, address = {}, publisher = {Hacettepe University}, year = {2020}, volume = {49}, pages = {1093 - 1106}, doi = {10.15672/hujms.647228}, title = {Ladders and fan graphs are cycle-antimagic}, key = {cite}, author = {Baca, Martin and Jeyanthi̇, P. and Thi̇llai̇ammal Muthuraja, Narayanaperumal and Selvagopal, Pothukutti Nadar and Fenovcıkova, Andrea} }
APA Baca, M , Jeyanthi̇, P , Thi̇llai̇ammal Muthuraja, N , Selvagopal, P , Fenovcıkova, A . (2020). Ladders and fan graphs are cycle-antimagic . Hacettepe Journal of Mathematics and Statistics , 49 (3) , 1093-1106 . DOI: 10.15672/hujms.647228
MLA Baca, M , Jeyanthi̇, P , Thi̇llai̇ammal Muthuraja, N , Selvagopal, P , Fenovcıkova, A . "Ladders and fan graphs are cycle-antimagic" . Hacettepe Journal of Mathematics and Statistics 49 (2020 ): 1093-1106 <https://dergipark.org.tr/en/pub/hujms/issue/54699/647228>
Chicago Baca, M , Jeyanthi̇, P , Thi̇llai̇ammal Muthuraja, N , Selvagopal, P , Fenovcıkova, A . "Ladders and fan graphs are cycle-antimagic". Hacettepe Journal of Mathematics and Statistics 49 (2020 ): 1093-1106
RIS TY - JOUR T1 - Ladders and fan graphs are cycle-antimagic AU - Martin Baca , P. Jeyanthi̇ , Narayanaperumal Thi̇llai̇ammal Muthuraja , Pothukutti Nadar Selvagopal , Andrea Fenovcıkova Y1 - 2020 PY - 2020 N1 - doi: 10.15672/hujms.647228 DO - 10.15672/hujms.647228 T2 - Hacettepe Journal of Mathematics and Statistics JF - Journal JO - JOR SP - 1093 EP - 1106 VL - 49 IS - 3 SN - 2651-477X-2651-477X M3 - doi: 10.15672/hujms.647228 UR - https://doi.org/10.15672/hujms.647228 Y2 - 2019 ER -
EndNote %0 Hacettepe Journal of Mathematics and Statistics Ladders and fan graphs are cycle-antimagic %A Martin Baca , P. Jeyanthi̇ , Narayanaperumal Thi̇llai̇ammal Muthuraja , Pothukutti Nadar Selvagopal , Andrea Fenovcıkova %T Ladders and fan graphs are cycle-antimagic %D 2020 %J Hacettepe Journal of Mathematics and Statistics %P 2651-477X-2651-477X %V 49 %N 3 %R doi: 10.15672/hujms.647228 %U 10.15672/hujms.647228
ISNAD Baca, Martin , Jeyanthi̇, P. , Thi̇llai̇ammal Muthuraja, Narayanaperumal , Selvagopal, Pothukutti Nadar , Fenovcıkova, Andrea . "Ladders and fan graphs are cycle-antimagic". Hacettepe Journal of Mathematics and Statistics 49 / 3 (June 2020): 1093-1106 . https://doi.org/10.15672/hujms.647228
AMA Baca M , Jeyanthi̇ P , Thi̇llai̇ammal Muthuraja N , Selvagopal P , Fenovcıkova A . Ladders and fan graphs are cycle-antimagic. Hacettepe Journal of Mathematics and Statistics. 2020; 49(3): 1093-1106.
Vancouver Baca M , Jeyanthi̇ P , Thi̇llai̇ammal Muthuraja N , Selvagopal P , Fenovcıkova A . Ladders and fan graphs are cycle-antimagic. Hacettepe Journal of Mathematics and Statistics. 2020; 49(3): 1093-1106.