Year 2020, Volume 49 , Issue 4, Pages 1405 - 1413 2020-08-06

A Balakrishnan-Rubin type hypersingular integral operator and inversion of Flett potentials

Sinem SEZER EVCAN [1] , Melih ERYİĞİT [2] , Selim ÇOBANOĞLU [3]


In the present paper we introduce new ``truncated" hypersingular integral operators $D_{\epsilon}^{\alpha}f,(\epsilon>0)$ generated by the modified Poisson semigroup and obtain an explicit inversion formula for the Flett potentials in framework of $L_p$--spaces.

****************************************************************************************************************************************************

****************************************************************************************************************************************************

Flett potentials, Truncated hypersingular integrals, Poisson semigroup
  • [1] I.A. Aliev, Bi-parametric potentials, relevant function spaces and wavelet-like transforms, Integral Equations and Operator Theory, 65, 151–167, 2009.
  • [2] I.A. Aliev and M. Eryigit, Inversion of Bessel potantials with the aid of weighted wavelet transforms, Math. Nachr. 242, 27–37, 2002.
  • [3] I.A. Aliev and B. Rubin, Parabolic potentials and wavelet transforms with the generalized translation, Stud. Math. 145 (1), 1–16, 2001.
  • [4] I.A. Aliev, S. Sezer and M. Eryiğit, An integral transform associated to the Poisson integral and inversion of Flett potentials, J. Math. Anal. Appl. 321, 691–704, 2006.
  • [5] I.A. Aliev, B. Rubin, S. Sezer and S.B. Uyhan, Composite Wavelet Transforms: Aplications and Perspectives, Contemp. Math. AMS, 464, 1–27, 2008.
  • [6] V.Balakrishnan , Fractional powers of closed operators and the semi-groups generated by them, Pasific J. Math. 10, 419–437, 1960.
  • [7] T.M. Flett, Temperatures, Bessel potentials and Lipschitz spaces, Proc. Lond. Math. Soc. 3 (3), 385–451, 1971.
  • [8] P.I. Lizorkin, Characterization of the spaces $L_{p}^{r}\left( \mathbb{R}^{n}\right) $ in terms of difference singular integrals, Mat. Sb. (N.S.) 81 (1), 79–91, 1970 (in Russian).
  • [9] V.A. Nogin, On inversion of Bessel potentials, J. Differential Equations, 18, 1407– 1411, 1982.
  • [10] V.A. Nogin and B.S. Rubin, Inversion of parabolic potentials with L p-densities, Mat. Zametki, 39, 831–840, 1986 (in Russian).
  • [11] B. Rubin, Description and inversion of Bessel potentials by means of hypersingular integrals with weighted differences, Differ. Uravn. 22 (10), 1805–1818, 1986.
  • [12] B. Rubin, A method of characterization and inversion of Bessel and Riesz potentials, Sov. Math. (Iz. VUZ) 30 (5), 78–89, 1986.
  • [13] B. Rubin, Inversion of potentials on $\mathbb{R}^{n}$ with the aid of Gauss-Weierstrass integrals, Math. Notes, 41 (1-2), 22–27, 1987. English translation from Math. Zametki 41 (1), 34–42, 1987.
  • [14] B. Rubin, Fractional integrals and potentials, Pitman Monographs and Surveys in Pure and Applied Mathematics. Longman, Harlow, 1996.
  • [15] S.G. Samko, Hypersingular integrals and their applications, Izdat., Rostov Univ., Rostovon-Don, 1984 (in Russian).
  • [16] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Sci. Publ., London, New York, 1993.
  • [17] S. Sezer and I.A. Aliev, A New Characterization Of The Riesz Potential Spaces With The Aid Of A Composite Wavelet Transform, J. Math. Anal. Appl. 372, 549–558, 2010.
  • [18] E. Stein, The characterization of functions arising as potentials, I, Bull. Amer. Math. Soc. 67 (1), 102–104, 1961.
  • [19] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton New Jersey, 1970.
  • [20] E. Stein and G.Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton NJ., 1971.
  • [21] R.L. Wheeden, On hypersingular integrals and Lebesgue spaces of differentiable functions, Trans. Amer. Math. Soc. 134 (3), 421–435, 1968.
Primary Language en
Subjects Mathematics
Journal Section Mathematics
Authors

Orcid: 0000-0003-2066-7833
Author: Sinem SEZER EVCAN (Primary Author)
Institution: AKDENIZ UNIVERSITY
Country: Turkey


Orcid: 0000-0002-9782-7199
Author: Melih ERYİĞİT
Institution: AKDENIZ UNIVERSITY
Country: Turkey


Orcid: 0000-0003-0566-5258
Author: Selim ÇOBANOĞLU
Institution: Ahi Evran Vocational and Technical Anatolian High School
Country: Turkey


Dates

Publication Date : August 6, 2020

Bibtex @research article { hujms489071, journal = {Hacettepe Journal of Mathematics and Statistics}, issn = {2651-477X}, eissn = {2651-477X}, address = {}, publisher = {Hacettepe University}, year = {2020}, volume = {49}, pages = {1405 - 1413}, doi = {10.15672/hujms.489071}, title = {A Balakrishnan-Rubin type hypersingular integral operator and inversion of Flett potentials}, key = {cite}, author = {Sezer Evcan, Sinem and Eryi̇ği̇t, Melih and Çobanoğlu, Selim} }
APA Sezer Evcan, S , Eryi̇ği̇t, M , Çobanoğlu, S . (2020). A Balakrishnan-Rubin type hypersingular integral operator and inversion of Flett potentials . Hacettepe Journal of Mathematics and Statistics , 49 (4) , 1405-1413 . DOI: 10.15672/hujms.489071
MLA Sezer Evcan, S , Eryi̇ği̇t, M , Çobanoğlu, S . "A Balakrishnan-Rubin type hypersingular integral operator and inversion of Flett potentials" . Hacettepe Journal of Mathematics and Statistics 49 (2020 ): 1405-1413 <https://dergipark.org.tr/en/pub/hujms/issue/56305/489071>
Chicago Sezer Evcan, S , Eryi̇ği̇t, M , Çobanoğlu, S . "A Balakrishnan-Rubin type hypersingular integral operator and inversion of Flett potentials". Hacettepe Journal of Mathematics and Statistics 49 (2020 ): 1405-1413
RIS TY - JOUR T1 - A Balakrishnan-Rubin type hypersingular integral operator and inversion of Flett potentials AU - Sinem Sezer Evcan , Melih Eryi̇ği̇t , Selim Çobanoğlu Y1 - 2020 PY - 2020 N1 - doi: 10.15672/hujms.489071 DO - 10.15672/hujms.489071 T2 - Hacettepe Journal of Mathematics and Statistics JF - Journal JO - JOR SP - 1405 EP - 1413 VL - 49 IS - 4 SN - 2651-477X-2651-477X M3 - doi: 10.15672/hujms.489071 UR - https://doi.org/10.15672/hujms.489071 Y2 - 2019 ER -
EndNote %0 Hacettepe Journal of Mathematics and Statistics A Balakrishnan-Rubin type hypersingular integral operator and inversion of Flett potentials %A Sinem Sezer Evcan , Melih Eryi̇ği̇t , Selim Çobanoğlu %T A Balakrishnan-Rubin type hypersingular integral operator and inversion of Flett potentials %D 2020 %J Hacettepe Journal of Mathematics and Statistics %P 2651-477X-2651-477X %V 49 %N 4 %R doi: 10.15672/hujms.489071 %U 10.15672/hujms.489071
ISNAD Sezer Evcan, Sinem , Eryi̇ği̇t, Melih , Çobanoğlu, Selim . "A Balakrishnan-Rubin type hypersingular integral operator and inversion of Flett potentials". Hacettepe Journal of Mathematics and Statistics 49 / 4 (August 2020): 1405-1413 . https://doi.org/10.15672/hujms.489071
AMA Sezer Evcan S , Eryi̇ği̇t M , Çobanoğlu S . A Balakrishnan-Rubin type hypersingular integral operator and inversion of Flett potentials. Hacettepe Journal of Mathematics and Statistics. 2020; 49(4): 1405-1413.
Vancouver Sezer Evcan S , Eryi̇ği̇t M , Çobanoğlu S . A Balakrishnan-Rubin type hypersingular integral operator and inversion of Flett potentials. Hacettepe Journal of Mathematics and Statistics. 2020; 49(4): 1405-1413.