A new double-step method for solving complex Helmholtz equation
Year 2020,
Volume: 49 Issue: 4, 1245 - 1260, 06.08.2020
Tahereh Salimi Siahkoalaei
Davod Khojasteh Salkuyeh
Abstract
We present a new double-step iteration method for solving the systems of linear equations that arise from finite difference discretizations of the complex Helmholtz equations. Convergence analysis of the method is discussed. An upper bound on the spectral radius of the iteration matrix of the method is presented and the parameter which minimizes this upper bound is computed. The proposed method is compared theoretically and numerically with some existing methods.
******************************************************************************
References
- [1] L. Abrahamsson, H.-O. Kreiss, Numerical solution of the coupled mode equations in
duct acoustics, J. Comput. Phys. 111, 1–14, 1994.
- [2] O. Axelsson, A. Kucherov, Real valued iterative methods for solving complex symmetric
linear systems, Numer. Linear Algebra Appl. 7, 197–218, 2000.
- [3] Z.-Z. Bai, M. Benzi, F. Chen, Modified HSS iteration methods for a class of complex
symmetric linear systems, Computing, 87, 93–111, 2010.
- [4] Z.-Z. Bai, M. Benzi, F. Chen, On preconditioned MHSS iteration methods for complex
symmetric linear systems, Numer. Algor. 56, 297–317, 2011.
- [5] Z.-Z. Bai, M. Benzi, F. Chen, Z.-Q. Wang, Preconditioned MHSS iteration methods
for a class of block two-by-two linear systems with applications to distributed control
problems, IMA J. Numer. Anal. 33, 343–369, 2013.
- [6] Z.-Z. Bai, G.H. Golub, M.K. Ng, Hermitian and skew-Hermitian splitting methods
for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl. 24,
603–626, 2003.
- [7] Z.-Z. Bai, G.H. Golub, M.K. Ng, On inexact Hermitian and skew-Hermitian splitting
methods for non-Hermitian positive definite linear systems, Linear Algebra Appl. 428,
413–440, 2008.
- [8] Z.-Z. Bai, B.N. Parlett, Z.-Q.Wang, On generalized successive overrelaxation methods
for augmented linear systems, Numer. Math. 102, 1–38, 2005.
- [9] M. Benzi, D. Bertaccini, Block preconditioning of real-valued iterative algorithms for
complex linear systems, IMA J. Numer. Anal. 28, 598–618, 2008.
- [10] O.G. Ernst, Fast numerical solution of Exterior Helmholtz with radiation boundary
condition by imbedding, Ph.D thesis, Dept. of Computer Science, Stanford Univ.,
Stanford, CA, 1994.
- [11] M.R. Hestenes, E.L. Stiefel, Methods of conjugate gradients for solving linear systems,
J. Res. Natl. Stand, Sec. B 49, 409–436, 1952.
- [12] D. Hezari, V. Edalatpour, D.K. Salkuyeh, Preconditioned GSOR iterative method for
a class of complex symmetric system of linear equations, Numer. Linear Algebra Appl.
22, 761–776, 2015.
- [13] D. Hezari, D.K. Salkuyeh, V. Edalatpour, A new iterative method for solving a class
of complex symmetric system of linear equations, Numer. Algor. 73, 927–955, 2016.
- [14] C.D. Meyer, Matrix analysis and applied linear algebra, SIAM, Philadelphia, 2000.
- [15] Y. Saad, Iterative methods for sparse linear systems, PWS Press, New York, 1995.
- [16] D.K. Salkuyeh, Two-step scale-splitting method for solving complex symmetric system
of linear equations, arXiv:1705.02468.
- [17] D.K. Salkuyeh, D. Hezari, V. Edalatpour, Generalized successive overrelaxation iterative
method for a class of complex symmetric linear system of equations, Int. J.
Comput. Math. 92, 802–815, 2015.
- [18] D.K. Salkuyeh, T.S. Siahkolaei, Two-parameter TSCSP method for solving complex
symmetric system of linear equations, Calcolo 55, 8, 2018.
- [19] T. Wang, Q. Zheng, L. Lu, A new iteration method for a class of complex symmetric
linear systems, J. Comput. Appl. Math. 325, 188–197, 2017.
- [20] Z. Zheng, F.-L. Huang, Y.-C. Peng, Double-step scale splitting iteration method for a
class of complex symmetric linear systems, Appl. Math. Lett. 73, 91–97, 2017.
Year 2020,
Volume: 49 Issue: 4, 1245 - 1260, 06.08.2020
Tahereh Salimi Siahkoalaei
Davod Khojasteh Salkuyeh
References
- [1] L. Abrahamsson, H.-O. Kreiss, Numerical solution of the coupled mode equations in
duct acoustics, J. Comput. Phys. 111, 1–14, 1994.
- [2] O. Axelsson, A. Kucherov, Real valued iterative methods for solving complex symmetric
linear systems, Numer. Linear Algebra Appl. 7, 197–218, 2000.
- [3] Z.-Z. Bai, M. Benzi, F. Chen, Modified HSS iteration methods for a class of complex
symmetric linear systems, Computing, 87, 93–111, 2010.
- [4] Z.-Z. Bai, M. Benzi, F. Chen, On preconditioned MHSS iteration methods for complex
symmetric linear systems, Numer. Algor. 56, 297–317, 2011.
- [5] Z.-Z. Bai, M. Benzi, F. Chen, Z.-Q. Wang, Preconditioned MHSS iteration methods
for a class of block two-by-two linear systems with applications to distributed control
problems, IMA J. Numer. Anal. 33, 343–369, 2013.
- [6] Z.-Z. Bai, G.H. Golub, M.K. Ng, Hermitian and skew-Hermitian splitting methods
for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl. 24,
603–626, 2003.
- [7] Z.-Z. Bai, G.H. Golub, M.K. Ng, On inexact Hermitian and skew-Hermitian splitting
methods for non-Hermitian positive definite linear systems, Linear Algebra Appl. 428,
413–440, 2008.
- [8] Z.-Z. Bai, B.N. Parlett, Z.-Q.Wang, On generalized successive overrelaxation methods
for augmented linear systems, Numer. Math. 102, 1–38, 2005.
- [9] M. Benzi, D. Bertaccini, Block preconditioning of real-valued iterative algorithms for
complex linear systems, IMA J. Numer. Anal. 28, 598–618, 2008.
- [10] O.G. Ernst, Fast numerical solution of Exterior Helmholtz with radiation boundary
condition by imbedding, Ph.D thesis, Dept. of Computer Science, Stanford Univ.,
Stanford, CA, 1994.
- [11] M.R. Hestenes, E.L. Stiefel, Methods of conjugate gradients for solving linear systems,
J. Res. Natl. Stand, Sec. B 49, 409–436, 1952.
- [12] D. Hezari, V. Edalatpour, D.K. Salkuyeh, Preconditioned GSOR iterative method for
a class of complex symmetric system of linear equations, Numer. Linear Algebra Appl.
22, 761–776, 2015.
- [13] D. Hezari, D.K. Salkuyeh, V. Edalatpour, A new iterative method for solving a class
of complex symmetric system of linear equations, Numer. Algor. 73, 927–955, 2016.
- [14] C.D. Meyer, Matrix analysis and applied linear algebra, SIAM, Philadelphia, 2000.
- [15] Y. Saad, Iterative methods for sparse linear systems, PWS Press, New York, 1995.
- [16] D.K. Salkuyeh, Two-step scale-splitting method for solving complex symmetric system
of linear equations, arXiv:1705.02468.
- [17] D.K. Salkuyeh, D. Hezari, V. Edalatpour, Generalized successive overrelaxation iterative
method for a class of complex symmetric linear system of equations, Int. J.
Comput. Math. 92, 802–815, 2015.
- [18] D.K. Salkuyeh, T.S. Siahkolaei, Two-parameter TSCSP method for solving complex
symmetric system of linear equations, Calcolo 55, 8, 2018.
- [19] T. Wang, Q. Zheng, L. Lu, A new iteration method for a class of complex symmetric
linear systems, J. Comput. Appl. Math. 325, 188–197, 2017.
- [20] Z. Zheng, F.-L. Huang, Y.-C. Peng, Double-step scale splitting iteration method for a
class of complex symmetric linear systems, Appl. Math. Lett. 73, 91–97, 2017.