Year 2020, Volume 49 , Issue 4, Pages 1397 - 1404 2020-08-06

Rings such that, for each unit $u$, $u-u^n$ belongs to the Jacobson radical

M. Tamer KOŞAN [1] , Truong Cong QUYNH [2] , Tülay YILDIRIM [3] , Jan ŽEMLİČKA [4]


A ring $R$ is said to be $n$-UJ if $u-u^n\in J(R)$ for each unit $u$ of $R$, where $n > 1$ is a fixed integer. In this paper, the structure of $n$-UJ rings is studied under various conditions. Moreover, the $n$-UJ property is studied under some algebraic constructions.

**********************************************************************************************************************************************************************

**********************************************************************************************************************************************************************

UU-ring, UJ-ring, unit, Jacobson radical, clean ring, (semi)regular ring, reduced ring
  • [1] D.D. Anderson, D. Bennis, B. Fahid and A. Shaiea, On n-trivial extensions of rings, Rocky Mountain. J. Math. 47, 2439–2511, 2017.
  • [2] A. Badawi, On abelian π-regular rings, Comm. Algebra, 25 (4), 1009–1021, 1997.
  • [3] G.F. Birkenmeier, H.E. Heatherly, and E.K. Lee, Completely prime ideals and associated radicals, Proc. Biennial Ohio State-Denison Conference 1992, edited by S. K. Jain and S. T. Rizvi, World Scientific, Singapore-New Jersey-London-Hong Kong, 102–129, 1993.
  • [4] G. Calugareanu, UU rings, Carpathian J. Math. 31 (2), 157–163, 2015.
  • [5] J. Cui and X. Yin, Rings with 2-UJ property, Comm. Algebra, 48 (4), 1382–1391, 2020.
  • [6] P. Danchev, Rings with Jacobson units, Toyama Math. J. 38, 61–74, 2016.
  • [7] P. Danchev and T.Y. Lam, Rings with unipotent units, Publ. Math. Debrecen, 88 (3-4), 449–466, 2016.
  • [8] P. Danchev and J. Matczuk, n-torsion clean rings, in: Rings, modules and codes, Contemp. Math. 727, Amer. Math. Soc. Providence, RI, 71–82, 2019.
  • [9] J. Han and W.K. Nicholson, Extension of clean rings, Comm. Algebra, 29 (6), 2589– 2595, 2001.
  • [10] I. Kaplansky, Rings with a polynomial identity, Bull. Amer. Math. Soc. 54 (6), 575– 580, 1948.
  • [11] M.T. Koşan, The p.p. property of trivial extensions, J. Algebra Appl. 14 (8), 1550124, 5 pp., 2015.
  • [12] M.T. Koşan, A. Leroy and J. Matczuk, On UJ-rings, Comm. Algebra, 46 (5), 2297– 2303, 2018.
  • [13] T.Y. Lam, A First Course in Noncommutative Rings (second Ed.), Springer Verlag, New York, 2001.
  • [14] J. Levitzki, On the structure of algebraic algebras and related rings, Trans. Amer. Math. Soc. 74, 384–409, 1953.
  • [15] M. Marianne, Rings of quotients of generalized matrix rings, Comm. Algebra, 15 (10), 1991–2015, 1987.
  • [16] W.K. Nicholson, Semiregular modules and rings, Canad. J. Math. 28 (5), 1105–1120, 1976.
  • [17] W.K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229, 269-278, 1977.
  • [18] W.K. Nicholson, Strongly clean rings and Fittings lemma, Comm. Algebra, 27, 3583– 3592, 1999.
  • [19] S. Sahinkaya and T. Yildirim, UJ-endomorphism rings, The Mathematica Journal, 60 (83), 186–198, 2018.
Primary Language en
Subjects Mathematics
Journal Section Mathematics
Authors

Orcid: 0000-0002-5071-4568
Author: M. Tamer KOŞAN (Primary Author)
Institution: GAZI UNIVERSITY
Country: Turkey


Orcid: 0000-0002-0845-0175
Author: Truong Cong QUYNH
Institution: The University of Danang
Country: Vietnam


Orcid: 0000-0002-7289-5064
Author: Tülay YILDIRIM
Institution: GEBZE TECHNICAL UNIVERSITY
Country: Turkey


Orcid: 0000-0003-3319-5193
Author: Jan ŽEMLİČKA
Institution: Charles University
Country: Czech Republic


Dates

Publication Date : August 6, 2020

Bibtex @research article { hujms542574, journal = {Hacettepe Journal of Mathematics and Statistics}, issn = {2651-477X}, eissn = {2651-477X}, address = {}, publisher = {Hacettepe University}, year = {2020}, volume = {49}, pages = {1397 - 1404}, doi = {10.15672/hujms.542574}, title = {Rings such that, for each unit \$u\$, \$u-u\^n\$ belongs to the Jacobson radical}, key = {cite}, author = {Koşan, M. Tamer and Quynh, Truong Cong and Yıldırım, Tülay and Žemli̇čka, Jan} }
APA Koşan, M , Quynh, T , Yıldırım, T , Žemli̇čka, J . (2020). Rings such that, for each unit $u$, $u-u^n$ belongs to the Jacobson radical . Hacettepe Journal of Mathematics and Statistics , 49 (4) , 1397-1404 . DOI: 10.15672/hujms.542574
MLA Koşan, M , Quynh, T , Yıldırım, T , Žemli̇čka, J . "Rings such that, for each unit $u$, $u-u^n$ belongs to the Jacobson radical" . Hacettepe Journal of Mathematics and Statistics 49 (2020 ): 1397-1404 <https://dergipark.org.tr/en/pub/hujms/issue/56305/542574>
Chicago Koşan, M , Quynh, T , Yıldırım, T , Žemli̇čka, J . "Rings such that, for each unit $u$, $u-u^n$ belongs to the Jacobson radical". Hacettepe Journal of Mathematics and Statistics 49 (2020 ): 1397-1404
RIS TY - JOUR T1 - Rings such that, for each unit $u$, $u-u^n$ belongs to the Jacobson radical AU - M. Tamer Koşan , Truong Cong Quynh , Tülay Yıldırım , Jan Žemli̇čka Y1 - 2020 PY - 2020 N1 - doi: 10.15672/hujms.542574 DO - 10.15672/hujms.542574 T2 - Hacettepe Journal of Mathematics and Statistics JF - Journal JO - JOR SP - 1397 EP - 1404 VL - 49 IS - 4 SN - 2651-477X-2651-477X M3 - doi: 10.15672/hujms.542574 UR - https://doi.org/10.15672/hujms.542574 Y2 - 2019 ER -
EndNote %0 Hacettepe Journal of Mathematics and Statistics Rings such that, for each unit $u$, $u-u^n$ belongs to the Jacobson radical %A M. Tamer Koşan , Truong Cong Quynh , Tülay Yıldırım , Jan Žemli̇čka %T Rings such that, for each unit $u$, $u-u^n$ belongs to the Jacobson radical %D 2020 %J Hacettepe Journal of Mathematics and Statistics %P 2651-477X-2651-477X %V 49 %N 4 %R doi: 10.15672/hujms.542574 %U 10.15672/hujms.542574
ISNAD Koşan, M. Tamer , Quynh, Truong Cong , Yıldırım, Tülay , Žemli̇čka, Jan . "Rings such that, for each unit $u$, $u-u^n$ belongs to the Jacobson radical". Hacettepe Journal of Mathematics and Statistics 49 / 4 (August 2020): 1397-1404 . https://doi.org/10.15672/hujms.542574
AMA Koşan M , Quynh T , Yıldırım T , Žemli̇čka J . Rings such that, for each unit $u$, $u-u^n$ belongs to the Jacobson radical. Hacettepe Journal of Mathematics and Statistics. 2020; 49(4): 1397-1404.
Vancouver Koşan M , Quynh T , Yıldırım T , Žemli̇čka J . Rings such that, for each unit $u$, $u-u^n$ belongs to the Jacobson radical. Hacettepe Journal of Mathematics and Statistics. 2020; 49(4): 1397-1404.