Year 2020, Volume 49 , Issue 4, Pages 1515 - 1532 2020-08-06

Estimation of stress-strength probability in a multicomponent model based on geometric distribution

Milan JOVANOVIĆ [1] , Bojana MİLOŠEVİĆ [2] , Marko OBRADOVİĆ [3]


In this paper, the estimation of the stress-strength probability in a multicomponent model, in the case when all components follow the geometric distribution, is studied. This is the first time that multicomponent models with discrete probability distributions are considered. The MLE, UMVUE and Bayes point estimator, as well as asymptotic and bootstrap confidence intervals are presented. A simulation study is performed in order to compare the performance of various estimators. Finally, the methods are applied to real data examples from climatology and sport.
Multicomponent stress-strength, reliability, geometric distribution
  • [1] K. E. Ahmad, M. E. Fakhry and Z. F. Jaheen, Bayes estimation of ${P}({Y}> {X})$ in the geometric case, Microelectronics Reliability 35 (5), 817–820, 1995.
  • [2] F. Akgül, Reliability estimation in multicomponent stress–strength model for Topp- Leone distribution, J. Stat. Comput. Simul. 89 (15), 2914–2929, 2019.
  • [3] A. Barbiero, Inference on reliability of stress-strength models for Poisson data, Journal of Quality and Reliability Engineering 2013, 2013.
  • [4] G. K. Bhattacharyya and R. A. Johnson, Estimation of reliability in a multicomponent stress-strength model, J. Amer. Statist. Assoc. 69 (348), 966–970, 1974.
  • [5] S. Dey, J. Mazucheli and M. Z. Anis, Estimation of reliability of multicomponent stress–strength for a Kumaraswamy distribution, Comm. Statist. Theory Methods 46 (4), 1560–1572, 2017.
  • [6] E. Furrer, R. Katz, M. Walter and R. Furrer, Statistical modeling of hot spells and heat waves, Climate Research 43 (3), 191–205, 2010.
  • [7] S. Gunasekera, Classical, Bayesian, and generalized inferences of the reliability of a multicomponent system with censored data, J. Stat. Comput. Simul. 88 (18), 3455– 3501, 2018.
  • [8] R. V. Hogg, J. McKean and A. T. Craig, Introduction to Mathematical Statistics, 7th Edition, Pearson Prentice Hall, 2013.
  • [9] V. V. Ivshin and Ya.. P. Lumelskii, Statistical estimation problems in stress-strength models, Perm University Press, Perm, 1995.
  • [10] M. Jovanović, Estimation of {P}$\{{X}<{Y}\}$ for geometric-exponential model based on complete and censored sample, Comm. Statist. Simulation Comput. 46 (4), 3050– 3066, 2017.
  • [11] T. Kayal, Y. M. Tripathi, S. Dey and S. J. Wu, On estimating the reliability in a multicomponent stress-strength model based on Chen distribution, Comm. Statist. Theory Methods 49 (10), 2429–2447, 2020.
  • [12] D. Kendall and J. Dracup, On the generation of drought events using an alternating renewal-reward model, Stochastic Hydrology and Hydraulics 6 (1), 55–68, 1992.
  • [13] F. Kızılaslan, Classical and Bayesian estimation of reliability in a multicomponent stress–strength model based on a general class of inverse exponentiated distributions, Statist. Papers 59 (3), 1161–1192, 2018.
  • [14] F. Kizilaslan and M. Nadar, Classical and Bayesian estimation of reliability in multicomponent stress-strength model based on Weibull distribution, Revista Colombiana de Estadística 38 (2), 467–484, 2015.
  • [15] F. Kızılaslan and M. Nadar, Estimation of reliability in a multicomponent stress– strength model based on a bivariate Kumaraswamy distribution, Statist. Papers 59 (1), 307–340, 2018.
  • [16] A. Kohansal, On estimation of reliability in a multicomponent stress-strength model for a Kumaraswamy distribution based on progressively censored sample, Statist. Papers 60 (6), 2185–2224, 2019.
  • [17] S. Kotz, Y. Lumelskii and M. Pensky, The stress–strength model and its generalizations: theory and applications, World Scientific, 2003.
  • [18] S. S. Maiti, Estimation of {P}$({X}\leq {Y})$ in the geometric case, J. Indian Statist. Assoc. 33 (2), 87–91, 1995.
  • [19] M. Obradović, M. Jovanović and B. Milosević, Optimal unbiased estimates of {P}$\{${X}$<${Y}$\}$ for some families of distributions, Metodološki zvezki 11 (1), 21–29, 2014.
  • [20] M. Obradović, M. Jovanović, B. Milošević and V. Jevremović, Estimation of {P}$\{$X$\leq$Y$\}$ for geometric-Poisson model, Hacet. J. Math. Stat. 44 (4), 949–964, 2015.
  • [21] A. Pak, A. K. Gupta and N. B. Khoolenjani, On reliability in a multicomponent stress strength model with power Lindley distribution, Revista Colombiana de Estadística 41 (2), 251–267, 2018.
  • [22] G. S. Rao, Estimation of reliability in multicomponent stress-strength based on generalized exponential distribution, Revista Colombiana de Estadística 35 (1), 67–76, 2012.
  • [23] G. S. Rao, M. Aslam and O. H. Arif, Estimation of reliability in multicomponent stress–strength based on two parameter exponentiated Weibull distribution, Comm. Statist. Theory Methods 46 (15), 7495–7502, 2017.
  • [24] G. S. Rao, M. Aslam and D. Kundu, Burr-XII distribution parametric estimation and estimation of reliability of multicomponent stress-strength, Comm. Statist. Theory Methods 44 (23), 4953–4961, 2015.
  • [25] Y. S. Sathe and U. J. Dixit, Estimation of {P}$[{X}\leq{Y}]$ in the negative binomial distribution, J. Statist. Plann. Inference 93 (1), 83–92, 2001.
Primary Language en
Subjects Statistics and Probability
Journal Section Statistics
Authors

Orcid: 0000-0001-5512-0956
Author: Milan JOVANOVIĆ (Primary Author)
Institution: University of Belgrade
Country: Serbia


Orcid: 0000-0001-8243-9794
Author: Bojana MİLOŠEVİĆ
Institution: University of Belgrade
Country: Serbia


Orcid: 0000-0002-6826-3232
Author: Marko OBRADOVİĆ
Institution: University of Belgrade
Country: Serbia


Supporting Institution Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije (first and second author)
Project Number 174012
Dates

Publication Date : August 6, 2020

Bibtex @research article { hujms681608, journal = {Hacettepe Journal of Mathematics and Statistics}, issn = {2651-477X}, eissn = {2651-477X}, address = {}, publisher = {Hacettepe University}, year = {2020}, volume = {49}, pages = {1515 - 1532}, doi = {10.15672/hujms.681608}, title = {Estimation of stress-strength probability in a multicomponent model based on geometric distribution}, key = {cite}, author = {Jovanovıć, Milan and Mi̇loševi̇ć, Bojana and Obradovi̇ć, Marko} }
APA Jovanovıć, M , Mi̇loševi̇ć, B , Obradovi̇ć, M . (2020). Estimation of stress-strength probability in a multicomponent model based on geometric distribution . Hacettepe Journal of Mathematics and Statistics , 49 (4) , 1515-1532 . DOI: 10.15672/hujms.681608
MLA Jovanovıć, M , Mi̇loševi̇ć, B , Obradovi̇ć, M . "Estimation of stress-strength probability in a multicomponent model based on geometric distribution" . Hacettepe Journal of Mathematics and Statistics 49 (2020 ): 1515-1532 <https://dergipark.org.tr/en/pub/hujms/issue/56305/681608>
Chicago Jovanovıć, M , Mi̇loševi̇ć, B , Obradovi̇ć, M . "Estimation of stress-strength probability in a multicomponent model based on geometric distribution". Hacettepe Journal of Mathematics and Statistics 49 (2020 ): 1515-1532
RIS TY - JOUR T1 - Estimation of stress-strength probability in a multicomponent model based on geometric distribution AU - Milan Jovanovıć , Bojana Mi̇loševi̇ć , Marko Obradovi̇ć Y1 - 2020 PY - 2020 N1 - doi: 10.15672/hujms.681608 DO - 10.15672/hujms.681608 T2 - Hacettepe Journal of Mathematics and Statistics JF - Journal JO - JOR SP - 1515 EP - 1532 VL - 49 IS - 4 SN - 2651-477X-2651-477X M3 - doi: 10.15672/hujms.681608 UR - https://doi.org/10.15672/hujms.681608 Y2 - 2020 ER -
EndNote %0 Hacettepe Journal of Mathematics and Statistics Estimation of stress-strength probability in a multicomponent model based on geometric distribution %A Milan Jovanovıć , Bojana Mi̇loševi̇ć , Marko Obradovi̇ć %T Estimation of stress-strength probability in a multicomponent model based on geometric distribution %D 2020 %J Hacettepe Journal of Mathematics and Statistics %P 2651-477X-2651-477X %V 49 %N 4 %R doi: 10.15672/hujms.681608 %U 10.15672/hujms.681608
ISNAD Jovanovıć, Milan , Mi̇loševi̇ć, Bojana , Obradovi̇ć, Marko . "Estimation of stress-strength probability in a multicomponent model based on geometric distribution". Hacettepe Journal of Mathematics and Statistics 49 / 4 (August 2020): 1515-1532 . https://doi.org/10.15672/hujms.681608
AMA Jovanovıć M , Mi̇loševi̇ć B , Obradovi̇ć M . Estimation of stress-strength probability in a multicomponent model based on geometric distribution. Hacettepe Journal of Mathematics and Statistics. 2020; 49(4): 1515-1532.
Vancouver Jovanovıć M , Mi̇loševi̇ć B , Obradovi̇ć M . Estimation of stress-strength probability in a multicomponent model based on geometric distribution. Hacettepe Journal of Mathematics and Statistics. 2020; 49(4): 1515-1532.