Research Article
BibTex RIS Cite
Year 2020, Volume: 49 Issue: 5, 1825 - 1842, 06.10.2020
https://doi.org/10.15672/hujms.540946

Abstract

References

  • [1] S.T. Ali, J.P. Antoine and J.P. Gazeau, Coherent States, Wavelets and Their Generalizations, Springer-Verlag, New York, 2000.
  • [2] F. Andersson, M. Carlsson and L. Tenorio, On the representation of functions with Gaussian wave packets, J. Fourier Anal. Appl. 18, 146-181, 2012.
  • [3] A. Arefijamaal, The continuous Zak transform and generalized Gabor frames, Mediterr. J. Math. Phys. 10 (1), 353-365, 2013.
  • [4] A. Arefijamaal and A. Ghaani Farashahi, Zak transform for semidirect product of locally compact groups, Anal. Math. Phys. 3 (3), 263-276, 2013.
  • [5] A. Arefijamaal and R.A. Kamyabi-Gol, On the square integrability of quasi regular representation on semidirect product groups, J. Geom Anal. 19 (3), 541-552, 2009.
  • [6] O. Christensen, Pairs of dual Gabor frame generators with compact support and desired frequency localization, Appl. Comput. Harmon. Anal. 20 (3), 403-410, 2006.
  • [7] O. Christensen, Frames and Bases: An Introductory Course, Birkhäuser, Boston, 2008.
  • [8] C.K. Chui and X. Shi, Orthonormal wavelets and tight frames with arbitrary real dilation, Appl. Comput. Harmon. Anal. 9 (3), 243-264, 2000.
  • [9] A. Cordoba and C. Fefferman, Wave packets and Fourier integral operators, Comm. Part. Diff. Equat. 3 (11), 979-1005, 1978.
  • [10] I. Daubechies, The wavelet transform, time frequency locallization and signal analysis, IEEE Trans. Inform. Theory. 36 (5), 961-1005, 1990.
  • [11] I. Daubechies and B. Han, The canonical dual frame of a wavelet frame, Harmon. Anal. 12, 269-285, 2002.
  • [12] I. Daubechies and B. Han, Pairs of dual wavelet frames from any two refinable functions, Constr. Approx. 20, 325-352, 2004.
  • [13] J. Epperson, Hermite and Laguerre wave packet expansions, Studia Math. 126 (3), 199-217, 1998.
  • [14] G.B. Folland, A Course in Abstract Harmonic Analysis, CRCPress, Boca Raton, 1995.
  • [15] I.M. Gelfand, Eigen function expansions for equations with periodic coefficients, Dokl. Akad. Nauk. SSR 73, 1117-1120, 1950.
  • [16] A. Ghaani Farashahi, Generalized Weyl-Heisenberg groups, Anal. Math. Phys. 4 (3), 187-197, 2014.
  • [17] A. Ghaani Farashahi, Abstract harmonic analysis of wave packet transforms over locally compact abelian groups, Anal. Math. Banach. J. 11, 50-71, 2017.
  • [18] A. Ghaani Farashahi, Square-integrability of metaplectic wave packet representation on $L^{2}\left(\mathbb{R}\right)$, J. Math. Anal. Appl. 449, 769-92, 2017.
  • [19] A. Ghaani Farashahi, Theoretical frame properties of wave-packet matrices over prime fields, Linear Multilinear Algebra 11, 2017.
  • [20] A. Ghaani Farashahi, Square-integrability of multivariate metaplectic wave-packet representations, J. Phys. A 50, 115-202, 2017.
  • [21] A. Ghaani Farashahi, Multivariate wave-packet transforms, Z. Anal. Anwend. 36 (4), 481-500, 2017.
  • [22] A. Ghaani Farashahi, Abstract coherent state transforms over homogeneous spaces of compact groups, Complex Anal. Oper. Theory 12, 15-37, 2018.
  • [23] K. Gröchenig, Aspects of Gabor analysis on locally compact Abelian groups, in: Gabor Analysis and Algorithms, Birkhäuser Boston, 211-231, 1998.
  • [24] K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser, Boston, 2001.
  • [25] E. Hernandez, D. Labate and G. Weiss, A unified characterization of reproducing systems generated by a finite family II, J. Geom. Anal. 12 (4), 615-662, 2002.
  • [26] E. Hewitt and K.A. Ross, Abstract Harmonic Analysis, Springer-Verlag, Berlin, Vol I, 1963.
  • [27] A.J.E.M. Janssen, The Zak transform: a Signal transform for sampled timecontinuous signals Philips J. Res. 43, 23-69, 1988.
  • [28] E. Kaniuth and G. Kutyniok, Zeros of the Zak transforms on locally compact abelian groups, Proc. Amer. Math. Soc. 126, 3561-3569, 1998.
  • [29] T.H. Koornwinder, Wavelets: An Elementary Treatment of Theory and Applications, World Scientific, Singapore, (1993).
  • [30] G. Kutyniok, A qualitative uncertainty principle for functions generating a Gabor frame on LCA groups, J. Math. Anal. Appl. 279, 580-596, 2003.
  • [31] D. Labate, G. Weiss and E. Wilson, An approach to the study of wave packet systems, wavelet, frames and operator theory, Contemporary Mathematics 345, 215-235, 2004.
  • [32] J. Lemvig, Constructing pairs of dual bandlimited framelets with desired time localization, Adv. Comput Math. 30, 231-247, 2009.
  • [33] V. Runde, Lectures on Amenability, Springer, Berlin, 2002.
  • [34] J. Zak, Finite translations in solid state physics, Phys. Rev. lett. 19, 1967.

Existence of representation frames based on wave packet groups

Year 2020, Volume: 49 Issue: 5, 1825 - 1842, 06.10.2020
https://doi.org/10.15672/hujms.540946

Abstract

Let $H$ be a locally compact group, $K$ a locally compact abelian group with dual group $\hat{K}$. In this article, we consider the wave packet group $G_{\Theta}$ which is the semidirect product of locally compact groups $H$ and $K\times \hat{K}$, where $\Theta$ is a continuous homomorphism from $H$ into $Aut(K\times\hat{K})$. We review the quasi regular representation on $G_{\Theta}$ and extend the continuous Zak transform to $L^{2}(G_{\Theta})$. Moreover, we state a continuous frame based on $G_{\Theta}$ to reconstruct the element of $L^{2}\left(K\times \hat{K}\right)$. These results are extended to more general wave packet groups. Finally, we establish some methods to find dual of such continuous frames in the form of original frames.

References

  • [1] S.T. Ali, J.P. Antoine and J.P. Gazeau, Coherent States, Wavelets and Their Generalizations, Springer-Verlag, New York, 2000.
  • [2] F. Andersson, M. Carlsson and L. Tenorio, On the representation of functions with Gaussian wave packets, J. Fourier Anal. Appl. 18, 146-181, 2012.
  • [3] A. Arefijamaal, The continuous Zak transform and generalized Gabor frames, Mediterr. J. Math. Phys. 10 (1), 353-365, 2013.
  • [4] A. Arefijamaal and A. Ghaani Farashahi, Zak transform for semidirect product of locally compact groups, Anal. Math. Phys. 3 (3), 263-276, 2013.
  • [5] A. Arefijamaal and R.A. Kamyabi-Gol, On the square integrability of quasi regular representation on semidirect product groups, J. Geom Anal. 19 (3), 541-552, 2009.
  • [6] O. Christensen, Pairs of dual Gabor frame generators with compact support and desired frequency localization, Appl. Comput. Harmon. Anal. 20 (3), 403-410, 2006.
  • [7] O. Christensen, Frames and Bases: An Introductory Course, Birkhäuser, Boston, 2008.
  • [8] C.K. Chui and X. Shi, Orthonormal wavelets and tight frames with arbitrary real dilation, Appl. Comput. Harmon. Anal. 9 (3), 243-264, 2000.
  • [9] A. Cordoba and C. Fefferman, Wave packets and Fourier integral operators, Comm. Part. Diff. Equat. 3 (11), 979-1005, 1978.
  • [10] I. Daubechies, The wavelet transform, time frequency locallization and signal analysis, IEEE Trans. Inform. Theory. 36 (5), 961-1005, 1990.
  • [11] I. Daubechies and B. Han, The canonical dual frame of a wavelet frame, Harmon. Anal. 12, 269-285, 2002.
  • [12] I. Daubechies and B. Han, Pairs of dual wavelet frames from any two refinable functions, Constr. Approx. 20, 325-352, 2004.
  • [13] J. Epperson, Hermite and Laguerre wave packet expansions, Studia Math. 126 (3), 199-217, 1998.
  • [14] G.B. Folland, A Course in Abstract Harmonic Analysis, CRCPress, Boca Raton, 1995.
  • [15] I.M. Gelfand, Eigen function expansions for equations with periodic coefficients, Dokl. Akad. Nauk. SSR 73, 1117-1120, 1950.
  • [16] A. Ghaani Farashahi, Generalized Weyl-Heisenberg groups, Anal. Math. Phys. 4 (3), 187-197, 2014.
  • [17] A. Ghaani Farashahi, Abstract harmonic analysis of wave packet transforms over locally compact abelian groups, Anal. Math. Banach. J. 11, 50-71, 2017.
  • [18] A. Ghaani Farashahi, Square-integrability of metaplectic wave packet representation on $L^{2}\left(\mathbb{R}\right)$, J. Math. Anal. Appl. 449, 769-92, 2017.
  • [19] A. Ghaani Farashahi, Theoretical frame properties of wave-packet matrices over prime fields, Linear Multilinear Algebra 11, 2017.
  • [20] A. Ghaani Farashahi, Square-integrability of multivariate metaplectic wave-packet representations, J. Phys. A 50, 115-202, 2017.
  • [21] A. Ghaani Farashahi, Multivariate wave-packet transforms, Z. Anal. Anwend. 36 (4), 481-500, 2017.
  • [22] A. Ghaani Farashahi, Abstract coherent state transforms over homogeneous spaces of compact groups, Complex Anal. Oper. Theory 12, 15-37, 2018.
  • [23] K. Gröchenig, Aspects of Gabor analysis on locally compact Abelian groups, in: Gabor Analysis and Algorithms, Birkhäuser Boston, 211-231, 1998.
  • [24] K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser, Boston, 2001.
  • [25] E. Hernandez, D. Labate and G. Weiss, A unified characterization of reproducing systems generated by a finite family II, J. Geom. Anal. 12 (4), 615-662, 2002.
  • [26] E. Hewitt and K.A. Ross, Abstract Harmonic Analysis, Springer-Verlag, Berlin, Vol I, 1963.
  • [27] A.J.E.M. Janssen, The Zak transform: a Signal transform for sampled timecontinuous signals Philips J. Res. 43, 23-69, 1988.
  • [28] E. Kaniuth and G. Kutyniok, Zeros of the Zak transforms on locally compact abelian groups, Proc. Amer. Math. Soc. 126, 3561-3569, 1998.
  • [29] T.H. Koornwinder, Wavelets: An Elementary Treatment of Theory and Applications, World Scientific, Singapore, (1993).
  • [30] G. Kutyniok, A qualitative uncertainty principle for functions generating a Gabor frame on LCA groups, J. Math. Anal. Appl. 279, 580-596, 2003.
  • [31] D. Labate, G. Weiss and E. Wilson, An approach to the study of wave packet systems, wavelet, frames and operator theory, Contemporary Mathematics 345, 215-235, 2004.
  • [32] J. Lemvig, Constructing pairs of dual bandlimited framelets with desired time localization, Adv. Comput Math. 30, 231-247, 2009.
  • [33] V. Runde, Lectures on Amenability, Springer, Berlin, 2002.
  • [34] J. Zak, Finite translations in solid state physics, Phys. Rev. lett. 19, 1967.
There are 34 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Ali Akbar Arefijamaal 0000-0003-2153-352X

Atefe Razghandi This is me 0000-0002-5253-1730

Publication Date October 6, 2020
Published in Issue Year 2020 Volume: 49 Issue: 5

Cite

APA Arefijamaal, A. A., & Razghandi, A. (2020). Existence of representation frames based on wave packet groups. Hacettepe Journal of Mathematics and Statistics, 49(5), 1825-1842. https://doi.org/10.15672/hujms.540946
AMA Arefijamaal AA, Razghandi A. Existence of representation frames based on wave packet groups. Hacettepe Journal of Mathematics and Statistics. October 2020;49(5):1825-1842. doi:10.15672/hujms.540946
Chicago Arefijamaal, Ali Akbar, and Atefe Razghandi. “Existence of Representation Frames Based on Wave Packet Groups”. Hacettepe Journal of Mathematics and Statistics 49, no. 5 (October 2020): 1825-42. https://doi.org/10.15672/hujms.540946.
EndNote Arefijamaal AA, Razghandi A (October 1, 2020) Existence of representation frames based on wave packet groups. Hacettepe Journal of Mathematics and Statistics 49 5 1825–1842.
IEEE A. A. Arefijamaal and A. Razghandi, “Existence of representation frames based on wave packet groups”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 5, pp. 1825–1842, 2020, doi: 10.15672/hujms.540946.
ISNAD Arefijamaal, Ali Akbar - Razghandi, Atefe. “Existence of Representation Frames Based on Wave Packet Groups”. Hacettepe Journal of Mathematics and Statistics 49/5 (October 2020), 1825-1842. https://doi.org/10.15672/hujms.540946.
JAMA Arefijamaal AA, Razghandi A. Existence of representation frames based on wave packet groups. Hacettepe Journal of Mathematics and Statistics. 2020;49:1825–1842.
MLA Arefijamaal, Ali Akbar and Atefe Razghandi. “Existence of Representation Frames Based on Wave Packet Groups”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 5, 2020, pp. 1825-42, doi:10.15672/hujms.540946.
Vancouver Arefijamaal AA, Razghandi A. Existence of representation frames based on wave packet groups. Hacettepe Journal of Mathematics and Statistics. 2020;49(5):1825-42.