Research Article
BibTex RIS Cite
Year 2020, Volume: 49 Issue: 6, 2063 - 2070, 08.12.2020
https://doi.org/10.15672/hujms.621628

Abstract

References

  • [1] J. Bonet and J.A. Conejero, The sets of monomorphisms and of almost open operators between locally convex spaces, Proc. Amer. Math. Soc. 129, 3683–3690, 2001.
  • [2] J. Bonet and E. Wolf, A note on weighted Banach spaces of holomorphic functions, Arch. Math. (Basel) 81, 650–654, 2003.
  • [3] C. Boyd and P. Rueda, The v-boundary of weighted spaces of holomorphic functions, Ann. Acad. Sci. Fenn. Math. 30, 337–352, 2005.
  • [4] Z. Gajda, On stability of additive mappings, Int. J. Math. Math. Sci. 14, 431–434, 1991.
  • [5] H.A. Gindler and A.E. Taylor, The minimum modulus of a linear operator and its use in spectral theory, Studia Math. 22, 15–41, 1962.
  • [6] L. Hörmander, An Introduction to Complex Analysis in Several Variables, North- Holland Mathematical Library 7, North-Holland, 1990.
  • [7] M. Klilou and L. Oubbi, Multiplication operators on generalized weighted spaces of continuous functions, Mediterr. J. Math. 13, 3265–3280, 2016.
  • [8] M. Klilou and L. Oubbi, Weighted composition operators on Nachbin spaces with operator-valued weights, Commun. Korean Math. Soc. 33, 1125–1140, 2018
  • [9] W. Lusky, On the structure of $H_{v_0}(D)$ and $h_{v_0}(D)$, Math. Nachr. 159, 279–289, 1992.
  • [10] W. Lusky, On weighted spaces of harmonic and holomorphic functions, J. London Math. Soc. 51, 309–320, 1995.
  • [11] W. Lusky, On the isomorphism classes of weighted spaces of harmonic and holomorphic functions, Studia Math. 175, 19–45, 2006.
  • [12] V. Müller, Spectral theory of linear operators and spectral systems in Banach algebras, in: Operator Theory: Advances and Applications, second ed. 139, Birkhäuser Verlag, Basel, 2007.
  • [13] W. Rudin, Function Theory in the Unit Ball of $\mathbb{C}^n$, Classics in Mathematics, Springer Berlin, 1980.
  • [14] C. Shekhar and B.S. Komal, Multiplication operators on weighted spaces of continuous functions with operator-valued weights, Int. J. Contemp. Math. Sci. 7 (38), 1889–1894, 2012.

Embedding the weighted space $Hv_0(G, E)$ of holomorphic functions into the sequence space $c_0(E)$

Year 2020, Volume: 49 Issue: 6, 2063 - 2070, 08.12.2020
https://doi.org/10.15672/hujms.621628

Abstract

We embed almost isometrically the generalized weighted space $Hv_0(G, E)$ of holomorphic functions on an open subset $G$ of $\mathbb{C}^N$ with values in a Banach space $E$, into $c_0(E)$, the space of all null sequences in $E$, where $v$ is an operator-valued continuous function on $G$ vanishing nowhere. This extends and generalizes some known results in the literature. We then deduce the non 1-Hyers-Rassias stability of the isometry functional equation in the framework of Banach spaces.

References

  • [1] J. Bonet and J.A. Conejero, The sets of monomorphisms and of almost open operators between locally convex spaces, Proc. Amer. Math. Soc. 129, 3683–3690, 2001.
  • [2] J. Bonet and E. Wolf, A note on weighted Banach spaces of holomorphic functions, Arch. Math. (Basel) 81, 650–654, 2003.
  • [3] C. Boyd and P. Rueda, The v-boundary of weighted spaces of holomorphic functions, Ann. Acad. Sci. Fenn. Math. 30, 337–352, 2005.
  • [4] Z. Gajda, On stability of additive mappings, Int. J. Math. Math. Sci. 14, 431–434, 1991.
  • [5] H.A. Gindler and A.E. Taylor, The minimum modulus of a linear operator and its use in spectral theory, Studia Math. 22, 15–41, 1962.
  • [6] L. Hörmander, An Introduction to Complex Analysis in Several Variables, North- Holland Mathematical Library 7, North-Holland, 1990.
  • [7] M. Klilou and L. Oubbi, Multiplication operators on generalized weighted spaces of continuous functions, Mediterr. J. Math. 13, 3265–3280, 2016.
  • [8] M. Klilou and L. Oubbi, Weighted composition operators on Nachbin spaces with operator-valued weights, Commun. Korean Math. Soc. 33, 1125–1140, 2018
  • [9] W. Lusky, On the structure of $H_{v_0}(D)$ and $h_{v_0}(D)$, Math. Nachr. 159, 279–289, 1992.
  • [10] W. Lusky, On weighted spaces of harmonic and holomorphic functions, J. London Math. Soc. 51, 309–320, 1995.
  • [11] W. Lusky, On the isomorphism classes of weighted spaces of harmonic and holomorphic functions, Studia Math. 175, 19–45, 2006.
  • [12] V. Müller, Spectral theory of linear operators and spectral systems in Banach algebras, in: Operator Theory: Advances and Applications, second ed. 139, Birkhäuser Verlag, Basel, 2007.
  • [13] W. Rudin, Function Theory in the Unit Ball of $\mathbb{C}^n$, Classics in Mathematics, Springer Berlin, 1980.
  • [14] C. Shekhar and B.S. Komal, Multiplication operators on weighted spaces of continuous functions with operator-valued weights, Int. J. Contemp. Math. Sci. 7 (38), 1889–1894, 2012.
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

El Mustapha El Abbassi This is me 0000-0002-1865-6118

Lahbib Oubbı 0000-0003-2119-9293

Publication Date December 8, 2020
Published in Issue Year 2020 Volume: 49 Issue: 6

Cite

APA El Abbassi, E. M., & Oubbı, L. (2020). Embedding the weighted space $Hv_0(G, E)$ of holomorphic functions into the sequence space $c_0(E)$. Hacettepe Journal of Mathematics and Statistics, 49(6), 2063-2070. https://doi.org/10.15672/hujms.621628
AMA El Abbassi EM, Oubbı L. Embedding the weighted space $Hv_0(G, E)$ of holomorphic functions into the sequence space $c_0(E)$. Hacettepe Journal of Mathematics and Statistics. December 2020;49(6):2063-2070. doi:10.15672/hujms.621628
Chicago El Abbassi, El Mustapha, and Lahbib Oubbı. “Embedding the Weighted Space $Hv_0(G, E)$ of Holomorphic Functions into the Sequence Space $c_0(E)$”. Hacettepe Journal of Mathematics and Statistics 49, no. 6 (December 2020): 2063-70. https://doi.org/10.15672/hujms.621628.
EndNote El Abbassi EM, Oubbı L (December 1, 2020) Embedding the weighted space $Hv_0(G, E)$ of holomorphic functions into the sequence space $c_0(E)$. Hacettepe Journal of Mathematics and Statistics 49 6 2063–2070.
IEEE E. M. El Abbassi and L. Oubbı, “Embedding the weighted space $Hv_0(G, E)$ of holomorphic functions into the sequence space $c_0(E)$”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 6, pp. 2063–2070, 2020, doi: 10.15672/hujms.621628.
ISNAD El Abbassi, El Mustapha - Oubbı, Lahbib. “Embedding the Weighted Space $Hv_0(G, E)$ of Holomorphic Functions into the Sequence Space $c_0(E)$”. Hacettepe Journal of Mathematics and Statistics 49/6 (December 2020), 2063-2070. https://doi.org/10.15672/hujms.621628.
JAMA El Abbassi EM, Oubbı L. Embedding the weighted space $Hv_0(G, E)$ of holomorphic functions into the sequence space $c_0(E)$. Hacettepe Journal of Mathematics and Statistics. 2020;49:2063–2070.
MLA El Abbassi, El Mustapha and Lahbib Oubbı. “Embedding the Weighted Space $Hv_0(G, E)$ of Holomorphic Functions into the Sequence Space $c_0(E)$”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 6, 2020, pp. 2063-70, doi:10.15672/hujms.621628.
Vancouver El Abbassi EM, Oubbı L. Embedding the weighted space $Hv_0(G, E)$ of holomorphic functions into the sequence space $c_0(E)$. Hacettepe Journal of Mathematics and Statistics. 2020;49(6):2063-70.