Research Article
BibTex RIS Cite
Year 2020, Volume: 49 Issue: 6, 2119 - 2133, 08.12.2020
https://doi.org/10.15672/hujms.635684

Abstract

References

  • [1] T.A. Abushal, Estimation of the unknown parameters for the compound Rayleigh distribution based on progressive first-failure-censored sampling, OJS 1 (03), 161–171, 2011.
  • [2] W.M. Afify, Classical estimation of mixed Rayleigh distribution in type-I progressive censored, Stat. Theory Appl. 10 (4), 619–632, 2011.
  • [3] S. Ali, Mixture of the inverse Rayleigh distribution: Properties and estimation in a Bayesian framework, Appl. Math. Model. 39, 515–530, 2015.
  • [4] S. Ali, On the Bayesian estimation of the weighted Lindley distribution, J. Stat. Comput. Simul. 85 (5), 855-880, 2015.
  • [5] S. Ali, M. Aslam, A. Nasir and S.M.A. Kazmi, Scale parameter estimation of the Laplace model using different asymmetric loss functions, International Journal of Statistics and Probability 1 (1), 105–127, 2012.
  • [6] F.J. Anscombe, Residuals, in: Time series and Statistics, 244-250, Palgrave Macmillan, London, 1990.
  • [7] M. Aslam, F. Noor and S. Ali, Shifted Exponential distribution: Bayesian estimation, prediction and expected test time under progressive censoring, J. Test. Eval. 48 (2), 1576–1593, 2020.
  • [8] R. Azimi and F. Yaghmaei, Bayesian estimation based on Rayleigh progressive type II censored data with Binomial removals, Journal of Quality and Reliability Engineering, 1–6, 2013.
  • [9] N. Balakrishnan and R. Aggarwala, Progressive Censoring: Theory, Methods, and Applications, Springer Science and Business Media, 2000.
  • [10] V. Barnett, The study of outliers: Purpose and Model, J. R. Stat. Soc. Ser. C. Appl. Stat. 27 (3), 242–250, 1978.
  • [11] A. Childs and N. Balakrishnan, Conditional inference procedures for The Laplace distribution when the observed samples are progressively censored, Metrika 52 (3), 253–265, 2000.
  • [12] U.J. Dixit and M.J. Nooghabi, Bayesian inference for the Pareto lifetime model in the presence of outliers under progressive censoring with binomial removals, Hacet. J. Math. Stat. 46 (5), 887–906, 2017.
  • [13] D.D. Dyer and C.W. Whisenand, Best linear unbiased estimator of the parameter of the Rayleigh distribution-Part I: Small sample theory for censored order statistics, IEEE Transactions on Reliability 46 (1), 27–34, 1973.
  • [14] F.E. Grubbs, Procedures for detecting outlying observations in samples, Technometrics 11 (1), 1–21, 1969.
  • [15] D.M. Hawkins, Identification of outliers 11, Chapman and Hall, London, 1980.
  • [16] B.K. Kale, Outliers-A review, J. Indian Statist. Assoc. 17, 51–67, 1979.
  • [17] V.B. Kale and B.K. Kale, Outliers in exponential sample−A Bayesian approach, Gujarat Statistical Review, 1992.
  • [18] A. Kohansal, Large Estimation of the stress-strength reliability of progressively censored inverted exponentiated Rayleigh distributions, J. Appl. Math. Stat. Inform. 13 (1), 49–76, 2017.
  • [19] N.R. Mann, Best linear invariant estimation for Weibull parameters under progressive censoring, Technometrics 13 (3), 521–533, 1971.
  • [20] M. Saleem and M. Aslam, On prior selection for the mixture of Rayleigh distribution using predictive Intervals, Pakistan J. Statist. 24 (1), 21–35, 2008.
  • [21] M. Saleem and M. Aslam, On Bayesian analysis of the Rayleigh survival time assuming the random censor time, Pakistan J. Statist. 25 (2), 71–82, 2009.
  • [22] A.M. Sarhan and A. Abuammoh, Statistical inference using progressively type-II censored data with random scheme, Int. Math. Forum (Online) 35 (3), 1713–1725, 2008.
  • [23] R. Shanker, F. Hagos and S. Sujatha, On modeling of Lifetimes data using exponential and Lindley distributions, Biom Biostat Int J 2 (5), 1-9, 2015.
  • [24] A.A. Soliman, Estimation of parameters of life from progressively censored data using Burr-XII model, IEEE Transactions on Reliability 54 (1), 34–42, 2005.
  • [25] S.J. Wu and C.T. Chang, Parameter estimations based on exponential progressive type II censored data with binomial removals, Int. J. Inf. Manag. Sci. 13 (3), 37–46, 2002.
  • [26] H.K. Yuen and S.K. Tse, Parameters estimation for Weibull distributed lifetimes under progressive censoring with random removals, J. Stat. Comput. Simul. 55 (1-2), 57–71, 1996.

Bayesian estimation of Rayleigh distribution in the presence of outliers using progressive censoring

Year 2020, Volume: 49 Issue: 6, 2119 - 2133, 08.12.2020
https://doi.org/10.15672/hujms.635684

Abstract

In this article, Maximum likelihood estimation (MLE) and Bayesian estimation for Rayleigh distribution using progressive type-II censoring in the presence of outliers is considered. Inverse Gamma prior and Jeffreys prior are used for Bayesian estimation. Squared error loss function (SELF), precautionary loss function (PLF) and K-loss function (KLF) are used for obtaining the expressions of Bayes estimators and posterior risks. Credible intervals are also derived. A simulation study is presented to discuss the behavior of Bayes estimators. Applicability of the undertaken study is highlighted using three real data sets.

References

  • [1] T.A. Abushal, Estimation of the unknown parameters for the compound Rayleigh distribution based on progressive first-failure-censored sampling, OJS 1 (03), 161–171, 2011.
  • [2] W.M. Afify, Classical estimation of mixed Rayleigh distribution in type-I progressive censored, Stat. Theory Appl. 10 (4), 619–632, 2011.
  • [3] S. Ali, Mixture of the inverse Rayleigh distribution: Properties and estimation in a Bayesian framework, Appl. Math. Model. 39, 515–530, 2015.
  • [4] S. Ali, On the Bayesian estimation of the weighted Lindley distribution, J. Stat. Comput. Simul. 85 (5), 855-880, 2015.
  • [5] S. Ali, M. Aslam, A. Nasir and S.M.A. Kazmi, Scale parameter estimation of the Laplace model using different asymmetric loss functions, International Journal of Statistics and Probability 1 (1), 105–127, 2012.
  • [6] F.J. Anscombe, Residuals, in: Time series and Statistics, 244-250, Palgrave Macmillan, London, 1990.
  • [7] M. Aslam, F. Noor and S. Ali, Shifted Exponential distribution: Bayesian estimation, prediction and expected test time under progressive censoring, J. Test. Eval. 48 (2), 1576–1593, 2020.
  • [8] R. Azimi and F. Yaghmaei, Bayesian estimation based on Rayleigh progressive type II censored data with Binomial removals, Journal of Quality and Reliability Engineering, 1–6, 2013.
  • [9] N. Balakrishnan and R. Aggarwala, Progressive Censoring: Theory, Methods, and Applications, Springer Science and Business Media, 2000.
  • [10] V. Barnett, The study of outliers: Purpose and Model, J. R. Stat. Soc. Ser. C. Appl. Stat. 27 (3), 242–250, 1978.
  • [11] A. Childs and N. Balakrishnan, Conditional inference procedures for The Laplace distribution when the observed samples are progressively censored, Metrika 52 (3), 253–265, 2000.
  • [12] U.J. Dixit and M.J. Nooghabi, Bayesian inference for the Pareto lifetime model in the presence of outliers under progressive censoring with binomial removals, Hacet. J. Math. Stat. 46 (5), 887–906, 2017.
  • [13] D.D. Dyer and C.W. Whisenand, Best linear unbiased estimator of the parameter of the Rayleigh distribution-Part I: Small sample theory for censored order statistics, IEEE Transactions on Reliability 46 (1), 27–34, 1973.
  • [14] F.E. Grubbs, Procedures for detecting outlying observations in samples, Technometrics 11 (1), 1–21, 1969.
  • [15] D.M. Hawkins, Identification of outliers 11, Chapman and Hall, London, 1980.
  • [16] B.K. Kale, Outliers-A review, J. Indian Statist. Assoc. 17, 51–67, 1979.
  • [17] V.B. Kale and B.K. Kale, Outliers in exponential sample−A Bayesian approach, Gujarat Statistical Review, 1992.
  • [18] A. Kohansal, Large Estimation of the stress-strength reliability of progressively censored inverted exponentiated Rayleigh distributions, J. Appl. Math. Stat. Inform. 13 (1), 49–76, 2017.
  • [19] N.R. Mann, Best linear invariant estimation for Weibull parameters under progressive censoring, Technometrics 13 (3), 521–533, 1971.
  • [20] M. Saleem and M. Aslam, On prior selection for the mixture of Rayleigh distribution using predictive Intervals, Pakistan J. Statist. 24 (1), 21–35, 2008.
  • [21] M. Saleem and M. Aslam, On Bayesian analysis of the Rayleigh survival time assuming the random censor time, Pakistan J. Statist. 25 (2), 71–82, 2009.
  • [22] A.M. Sarhan and A. Abuammoh, Statistical inference using progressively type-II censored data with random scheme, Int. Math. Forum (Online) 35 (3), 1713–1725, 2008.
  • [23] R. Shanker, F. Hagos and S. Sujatha, On modeling of Lifetimes data using exponential and Lindley distributions, Biom Biostat Int J 2 (5), 1-9, 2015.
  • [24] A.A. Soliman, Estimation of parameters of life from progressively censored data using Burr-XII model, IEEE Transactions on Reliability 54 (1), 34–42, 2005.
  • [25] S.J. Wu and C.T. Chang, Parameter estimations based on exponential progressive type II censored data with binomial removals, Int. J. Inf. Manag. Sci. 13 (3), 37–46, 2002.
  • [26] H.K. Yuen and S.K. Tse, Parameters estimation for Weibull distributed lifetimes under progressive censoring with random removals, J. Stat. Comput. Simul. 55 (1-2), 57–71, 1996.
There are 26 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Statistics
Authors

Farzana Noor 0000-0002-4135-0846

Ahthasham Sajid This is me 0000-0002-2829-0893

Maha Ghazal This is me

İmranullah Khan This is me 0000-0002-3268-4844

Mehwish Zaman This is me 0000-0002-4105-9477

İmran Baig This is me 0000-0002-3142-6958

Publication Date December 8, 2020
Published in Issue Year 2020 Volume: 49 Issue: 6

Cite

APA Noor, F., Sajid, A., Ghazal, M., Khan, İ., et al. (2020). Bayesian estimation of Rayleigh distribution in the presence of outliers using progressive censoring. Hacettepe Journal of Mathematics and Statistics, 49(6), 2119-2133. https://doi.org/10.15672/hujms.635684
AMA Noor F, Sajid A, Ghazal M, Khan İ, Zaman M, Baig İ. Bayesian estimation of Rayleigh distribution in the presence of outliers using progressive censoring. Hacettepe Journal of Mathematics and Statistics. December 2020;49(6):2119-2133. doi:10.15672/hujms.635684
Chicago Noor, Farzana, Ahthasham Sajid, Maha Ghazal, İmranullah Khan, Mehwish Zaman, and İmran Baig. “Bayesian Estimation of Rayleigh Distribution in the Presence of Outliers Using Progressive Censoring”. Hacettepe Journal of Mathematics and Statistics 49, no. 6 (December 2020): 2119-33. https://doi.org/10.15672/hujms.635684.
EndNote Noor F, Sajid A, Ghazal M, Khan İ, Zaman M, Baig İ (December 1, 2020) Bayesian estimation of Rayleigh distribution in the presence of outliers using progressive censoring. Hacettepe Journal of Mathematics and Statistics 49 6 2119–2133.
IEEE F. Noor, A. Sajid, M. Ghazal, İ. Khan, M. Zaman, and İ. Baig, “Bayesian estimation of Rayleigh distribution in the presence of outliers using progressive censoring”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 6, pp. 2119–2133, 2020, doi: 10.15672/hujms.635684.
ISNAD Noor, Farzana et al. “Bayesian Estimation of Rayleigh Distribution in the Presence of Outliers Using Progressive Censoring”. Hacettepe Journal of Mathematics and Statistics 49/6 (December 2020), 2119-2133. https://doi.org/10.15672/hujms.635684.
JAMA Noor F, Sajid A, Ghazal M, Khan İ, Zaman M, Baig İ. Bayesian estimation of Rayleigh distribution in the presence of outliers using progressive censoring. Hacettepe Journal of Mathematics and Statistics. 2020;49:2119–2133.
MLA Noor, Farzana et al. “Bayesian Estimation of Rayleigh Distribution in the Presence of Outliers Using Progressive Censoring”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 6, 2020, pp. 2119-33, doi:10.15672/hujms.635684.
Vancouver Noor F, Sajid A, Ghazal M, Khan İ, Zaman M, Baig İ. Bayesian estimation of Rayleigh distribution in the presence of outliers using progressive censoring. Hacettepe Journal of Mathematics and Statistics. 2020;49(6):2119-33.