Let $R$ be a commutative ring with non-zero identity, and $Z(R)$ be its set of all zero-divisors. The total graph of $R$, denoted by $T(\Gamma(R))$, is an undirected graph with all elements of $R$ as vertices, and two distinct vertices $x$ and $y$ are adjacent if and only if $x+y\in Z(R)$. In this article, we characterize, up to isomorphism, all of finite commutative rings whose total graphs have vertex-arboricity (arboricity) two or three. Also, we show that, for a positive integer $v$, the number of finite rings whose total graphs have vertex-arboricity (arboricity) $v$ is finite.
Primary Language | English |
---|---|
Subjects | Mathematical Sciences |
Journal Section | Mathematics |
Authors | |
Publication Date | February 4, 2021 |
Published in Issue | Year 2021 Volume: 50 Issue: 1 |