Recall that a ring $R\ $is said to be a quasi regular ring if its total quotient ring $q(R)\ $is \textit{von Neumann regular}. It is well known that a ring $R\ $is quasi regular if and only if it is a reduced ring satisfying the property: for each $a\in R,$ $ann_{R}(ann_{R}(a))=ann_{R}(b)$ for some $b\in R$. Here, in this study, we extend the notion of quasi regular rings and rings which satisfy the aforementioned property to modules. We give many characterizations and properties of these two classes of modules. Moreover, we investigate the (weak) quasi regular property of trivial extension.
[1] D.D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra, 1
(1), 3–56, 2009.
[2] D.F. Anderson, R. Levy and J. Shapiro, Zero-divisor graphs, von Neumann regular
rings, and Boolean algebras, J. Pure Appl. Algebra, 180 (3), 221–241, 2003.
[3] Z.A. El-Bast and P.F. Smith, Multiplication modules, Comm. Algebra, 16 (4), 755–
779, 1988.
[4] M. Evans, On commutative P.P. rings, Pac. J. Math. 41 (3), 687–697, 1972
[5] M. Henriksen and M. Jerison, The space of minimal prime ideals of a commutative
ring, Trans. Amer. Math. Soc. 115, 110–130, 1965.
[6] J.A. Huckaba, Commutative rings with zero divisors, Marcel Dekker, New York, 1988.
[7] C. Jayaram, Baer ideals in commutative semiprime rings, Indian J. Pure Appl. Math.
15 (8) 855–864, 1984.
[8] C. Jayaram and Ü. Tekir, von Neumann regular modules, Comm. Algebra, 46 (5),
2205–2217, 2018.
[9] T.K. Lee and Y. Zhou, Reduced modules, Rings, modules, algebras and abelian groups,
in:Lect. Notes Pure Appl. Math. New York, NY: Marcel Dekker, 236, 365–377, 2004.
[10] R. Levy and J. Shapiro, The zero-divisor graph of von Neumann regular rings, Comm.
Algebra, 30 (2), 745–750, 2002.
[11] C.P. Lu, Prime submodules of modules, Comment. Math. Univ. St. Pauli, 33 (1),
61–69, 1984.
[12] R.L. McCasland and M.E. Moore, Prime submodules, Comm. Algebra, 20 (6), 1803–
1817, 1992.
[13] M. Nagata, Local rings, Interscience Publishers, New York, 1960.
[14] J. Von Neumann, On regular rings, Proc. Natl. Acad. Sci. 22 (12), 707–713, 1936.
Year 2021,
Volume: 50 Issue: 1, 120 - 134, 04.02.2021
[1] D.D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra, 1
(1), 3–56, 2009.
[2] D.F. Anderson, R. Levy and J. Shapiro, Zero-divisor graphs, von Neumann regular
rings, and Boolean algebras, J. Pure Appl. Algebra, 180 (3), 221–241, 2003.
[3] Z.A. El-Bast and P.F. Smith, Multiplication modules, Comm. Algebra, 16 (4), 755–
779, 1988.
[4] M. Evans, On commutative P.P. rings, Pac. J. Math. 41 (3), 687–697, 1972
[5] M. Henriksen and M. Jerison, The space of minimal prime ideals of a commutative
ring, Trans. Amer. Math. Soc. 115, 110–130, 1965.
[6] J.A. Huckaba, Commutative rings with zero divisors, Marcel Dekker, New York, 1988.
[7] C. Jayaram, Baer ideals in commutative semiprime rings, Indian J. Pure Appl. Math.
15 (8) 855–864, 1984.
[8] C. Jayaram and Ü. Tekir, von Neumann regular modules, Comm. Algebra, 46 (5),
2205–2217, 2018.
[9] T.K. Lee and Y. Zhou, Reduced modules, Rings, modules, algebras and abelian groups,
in:Lect. Notes Pure Appl. Math. New York, NY: Marcel Dekker, 236, 365–377, 2004.
[10] R. Levy and J. Shapiro, The zero-divisor graph of von Neumann regular rings, Comm.
Algebra, 30 (2), 745–750, 2002.
[11] C.P. Lu, Prime submodules of modules, Comment. Math. Univ. St. Pauli, 33 (1),
61–69, 1984.
[12] R.L. McCasland and M.E. Moore, Prime submodules, Comm. Algebra, 20 (6), 1803–
1817, 1992.
[13] M. Nagata, Local rings, Interscience Publishers, New York, 1960.
[14] J. Von Neumann, On regular rings, Proc. Natl. Acad. Sci. 22 (12), 707–713, 1936.
Jayaram, C., Tekir, Ü., & Koç, S. (2021). Quasi regular modules and trivial extension. Hacettepe Journal of Mathematics and Statistics, 50(1), 120-134. https://doi.org/10.15672/hujms.613404
AMA
Jayaram C, Tekir Ü, Koç S. Quasi regular modules and trivial extension. Hacettepe Journal of Mathematics and Statistics. February 2021;50(1):120-134. doi:10.15672/hujms.613404
Chicago
Jayaram, Chillumuntala, Ünsal Tekir, and Suat Koç. “Quasi Regular Modules and Trivial Extension”. Hacettepe Journal of Mathematics and Statistics 50, no. 1 (February 2021): 120-34. https://doi.org/10.15672/hujms.613404.
EndNote
Jayaram C, Tekir Ü, Koç S (February 1, 2021) Quasi regular modules and trivial extension. Hacettepe Journal of Mathematics and Statistics 50 1 120–134.
IEEE
C. Jayaram, Ü. Tekir, and S. Koç, “Quasi regular modules and trivial extension”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 1, pp. 120–134, 2021, doi: 10.15672/hujms.613404.
ISNAD
Jayaram, Chillumuntala et al. “Quasi Regular Modules and Trivial Extension”. Hacettepe Journal of Mathematics and Statistics 50/1 (February 2021), 120-134. https://doi.org/10.15672/hujms.613404.
JAMA
Jayaram C, Tekir Ü, Koç S. Quasi regular modules and trivial extension. Hacettepe Journal of Mathematics and Statistics. 2021;50:120–134.
MLA
Jayaram, Chillumuntala et al. “Quasi Regular Modules and Trivial Extension”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 1, 2021, pp. 120-34, doi:10.15672/hujms.613404.
Vancouver
Jayaram C, Tekir Ü, Koç S. Quasi regular modules and trivial extension. Hacettepe Journal of Mathematics and Statistics. 2021;50(1):120-34.