Research Article
BibTex RIS Cite
Year 2021, Volume: 50 Issue: 1, 24 - 32, 04.02.2021
https://doi.org/10.15672/hujms.638900

Abstract

References

  • [1] Y. Abramovich and C.D. Aliprantis, An Invitation to Operator Theory, American Mathematical Society, New York, 2003.
  • [2] C.D. Aliprantis and O. Burkinshaw, Positive Operators, Springer, Dordrecht, 2006.
  • [3] A. Aydın, Unbounded $p_\tau$-convergence in vector lattice normed by locally solid vector lattices, in: Academic Studies in Mathematics and Natural Sciences-2019/2, 118-134, IVPE, Cetinje-Montenegro, 2019.
  • [4] A. Aydın, Multiplicative order convergence in $f$-algebras, Hacet. J. Math. Stat. 49 (3), 998–1005, 2020.
  • [5] A. Aydın, E. Emel’yanov, N.E. Özcan, and M.A.A. Marabeh, Compact-like operators in lattice-normed spaces, Indag. Math. 2, 633-656, 2018.
  • [6] A. Aydın, E. Emel’yanov, N.E. Özcan, and M.A.A. Marabeh, Unbounded $p$-convergence in lattice-normed vector lattices, Sib. Adv. Math. 29, 153-181, 2019.
  • [7] A. Aydın, S.G. Gorokhova, and H. Gül, Nonstandard hulls of lattice-normed ordered vector spaces, Turkish J. Math. 42, 155-163, 2018.
  • [8] Y.A. Dabboorasad, E.Y. Emelyanov, and M.A.A. Marabeh, $u\tau$-Convergence in locally solid vector lattices, Positivity 22, 1065-1080, 2018.
  • [9] Y. Deng, M. O’Brien, and V.G. Troitsky, Unbounded norm convergence in Banach lattices, Positivity 21, 963-974, 2017.
  • [10] N. Gao, V.G. Troitsky, and F. Xanthos, $Uo$-convergence and its applications to Cesáro means in Banach lattices, Israel J. Math. 220, 649-689, 2017.
  • [11] N. Gao and F. Xanthos, Unbounded order convergence and application to martingales without probability, Math. Anal. Appl. 415, 931-947, 2014.
  • [12] C.B. Huijsmans and B.D. Pagter, Ideal theory in $f$-algebras, Trans. Amer. Math. Soc. 269, 225-245, 1982.
  • [13] B.D. Pagter, $f$-Algebras and Orthomorphisms, Ph.D. Dissertation, Leiden, 1981.
  • [14] V. Runde, A Taste of Topology, Springer, Berlin, 2005.
  • [15] V.G. Troitsky, Measures of non-compactness of operators on Banach lattices, Positivity 8, 165-178, 2004.
  • [16] B.Z. Vulikh, Introduction to the Theory of Partially Ordered Spaces, Wolters- Noordhoff Scientific Publications, Groningen, 1967.
  • [17] A.C. Zaanen, Riesz Spaces II, The Netherlands: North-Holland Publishing Co., Amsterdam, 1983.

The multiplicative norm convergence in normed Riesz algebras

Year 2021, Volume: 50 Issue: 1, 24 - 32, 04.02.2021
https://doi.org/10.15672/hujms.638900

Abstract

A net $(x_\alpha)_{\alpha\in A}$ in an $f$-algebra $E$ is called multiplicative order convergent to $x\in E$ if $\lvert x_\alpha-x\rvert\cdot u \rightarrow 0$ for all $u\in E_+$. This convergence was introduced and studied on $f$-algebras with the order convergence. In this paper, we study a variation of this convergence for normed Riesz algebras with respect to the norm convergence. A net $(x_\alpha)_{\alpha\in A}$ in a normed Riesz algebra $E$ is said to be multiplicative norm convergent to $x\in E$ if $\big\lVert \lvert x_\alpha-x\rvert\cdot u\big\rVert\to 0$ for each $u\in E_+$. We study this concept and investigate its relationship with the other convergences, and also we introduce the $mn$-topology on normed Riesz algebras.

References

  • [1] Y. Abramovich and C.D. Aliprantis, An Invitation to Operator Theory, American Mathematical Society, New York, 2003.
  • [2] C.D. Aliprantis and O. Burkinshaw, Positive Operators, Springer, Dordrecht, 2006.
  • [3] A. Aydın, Unbounded $p_\tau$-convergence in vector lattice normed by locally solid vector lattices, in: Academic Studies in Mathematics and Natural Sciences-2019/2, 118-134, IVPE, Cetinje-Montenegro, 2019.
  • [4] A. Aydın, Multiplicative order convergence in $f$-algebras, Hacet. J. Math. Stat. 49 (3), 998–1005, 2020.
  • [5] A. Aydın, E. Emel’yanov, N.E. Özcan, and M.A.A. Marabeh, Compact-like operators in lattice-normed spaces, Indag. Math. 2, 633-656, 2018.
  • [6] A. Aydın, E. Emel’yanov, N.E. Özcan, and M.A.A. Marabeh, Unbounded $p$-convergence in lattice-normed vector lattices, Sib. Adv. Math. 29, 153-181, 2019.
  • [7] A. Aydın, S.G. Gorokhova, and H. Gül, Nonstandard hulls of lattice-normed ordered vector spaces, Turkish J. Math. 42, 155-163, 2018.
  • [8] Y.A. Dabboorasad, E.Y. Emelyanov, and M.A.A. Marabeh, $u\tau$-Convergence in locally solid vector lattices, Positivity 22, 1065-1080, 2018.
  • [9] Y. Deng, M. O’Brien, and V.G. Troitsky, Unbounded norm convergence in Banach lattices, Positivity 21, 963-974, 2017.
  • [10] N. Gao, V.G. Troitsky, and F. Xanthos, $Uo$-convergence and its applications to Cesáro means in Banach lattices, Israel J. Math. 220, 649-689, 2017.
  • [11] N. Gao and F. Xanthos, Unbounded order convergence and application to martingales without probability, Math. Anal. Appl. 415, 931-947, 2014.
  • [12] C.B. Huijsmans and B.D. Pagter, Ideal theory in $f$-algebras, Trans. Amer. Math. Soc. 269, 225-245, 1982.
  • [13] B.D. Pagter, $f$-Algebras and Orthomorphisms, Ph.D. Dissertation, Leiden, 1981.
  • [14] V. Runde, A Taste of Topology, Springer, Berlin, 2005.
  • [15] V.G. Troitsky, Measures of non-compactness of operators on Banach lattices, Positivity 8, 165-178, 2004.
  • [16] B.Z. Vulikh, Introduction to the Theory of Partially Ordered Spaces, Wolters- Noordhoff Scientific Publications, Groningen, 1967.
  • [17] A.C. Zaanen, Riesz Spaces II, The Netherlands: North-Holland Publishing Co., Amsterdam, 1983.
There are 17 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Abdullah Aydın 0000-0002-0769-5752

Publication Date February 4, 2021
Published in Issue Year 2021 Volume: 50 Issue: 1

Cite

APA Aydın, A. (2021). The multiplicative norm convergence in normed Riesz algebras. Hacettepe Journal of Mathematics and Statistics, 50(1), 24-32. https://doi.org/10.15672/hujms.638900
AMA Aydın A. The multiplicative norm convergence in normed Riesz algebras. Hacettepe Journal of Mathematics and Statistics. February 2021;50(1):24-32. doi:10.15672/hujms.638900
Chicago Aydın, Abdullah. “The Multiplicative Norm Convergence in Normed Riesz Algebras”. Hacettepe Journal of Mathematics and Statistics 50, no. 1 (February 2021): 24-32. https://doi.org/10.15672/hujms.638900.
EndNote Aydın A (February 1, 2021) The multiplicative norm convergence in normed Riesz algebras. Hacettepe Journal of Mathematics and Statistics 50 1 24–32.
IEEE A. Aydın, “The multiplicative norm convergence in normed Riesz algebras”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 1, pp. 24–32, 2021, doi: 10.15672/hujms.638900.
ISNAD Aydın, Abdullah. “The Multiplicative Norm Convergence in Normed Riesz Algebras”. Hacettepe Journal of Mathematics and Statistics 50/1 (February 2021), 24-32. https://doi.org/10.15672/hujms.638900.
JAMA Aydın A. The multiplicative norm convergence in normed Riesz algebras. Hacettepe Journal of Mathematics and Statistics. 2021;50:24–32.
MLA Aydın, Abdullah. “The Multiplicative Norm Convergence in Normed Riesz Algebras”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 1, 2021, pp. 24-32, doi:10.15672/hujms.638900.
Vancouver Aydın A. The multiplicative norm convergence in normed Riesz algebras. Hacettepe Journal of Mathematics and Statistics. 2021;50(1):24-32.