Research Article
BibTex RIS Cite
Year 2021, Volume: 50 Issue: 1, 216 - 223, 04.02.2021
https://doi.org/10.15672/hujms.685742

Abstract

References

  • [1] G. Baxter, An analytic problem whose solution follows from a simple algebraic iden- tity, Pacific J. Math. 10, 731–742, 1960.
  • [2] L. Guo, An Introduction to Rota-Baxter Algebra, Surveys of Modern Mathematics, 4. International Press, Somerville, MA; Higher Education Press, Beijing, 2012.
  • [3] L. Guo, Properties of free Baxter algebras, Adv. Math. 151, 346–374, 2000.
  • [4] L. Guo and W. Keigher, Baxter algebras and shuffle products, Adv. Math. 150, 117– 149, 2000.
  • [5] L. Guo and B. Zhang, Polylogarithms and multiple zeta values from free Rota-Baxter algebras, Sci. China Math. 53 (9), 2239–2258, 2010.
  • [6] L. Guo, J.-Y. Thibon and H. Yu, Weak composition quasi-symmetric functions, Rota- Baxter algebras and Hopf algebras, Adv. Math. 344, 1–34, 2019.
  • [7] R.Q. Jian, Quasi-idempotent Rota-Baxter operators arising from quasi-idempotent elements, Lett. Math. Phys. 107, 367–374, 2017.
  • [8] R.Q. Jian and J. Zhang, Rota-Baxter coalgebras, arXiv:1409.3052.
  • [9] T.S. Ma and L.L. Liu, Rota-Baxter coalgebras and Rota-Baxter bialgebras, Linear Multilinear Algebra, 64 (5), 968–979, 2016.
  • [10] D.E. Radford, Hopf Algebras, KE Series on Knots and Everything, World Scientific, Vol. 49, New Jersey, 2012.
  • [11] G.C. Rota, Baxter algebras and combinatorial identities I, II, Bull. Amer. Math. Soc. 75 (2), 325–329, 330–334, 1969.
  • [12] E.J. Taft, The order of the antipode of finite dimensional Hopf algebra, Proc. Nat. Acad. Sci. USA. 68, 2631–2633, 1971.

Rota-Baxter bialgebra structures arising from (co-)quasi-idempotent elements

Year 2021, Volume: 50 Issue: 1, 216 - 223, 04.02.2021
https://doi.org/10.15672/hujms.685742

Abstract

In this note, we construct Rota-Baxter (coalgebras) bialgebras by (co-)quasi-idempotent elements and prove that every finite dimensional Hopf algebra admits nontrivial Rota-Baxter bialgebra structures and tridendriform bialgebra structures. We give all the forms of (co)-quasi-idempotent elements and related structures of tridendriform (co, bi)algebras and Rota-Baxter (co, bi)algebras on the well-known Sweedler's four-dimensional Hopf algebra.

References

  • [1] G. Baxter, An analytic problem whose solution follows from a simple algebraic iden- tity, Pacific J. Math. 10, 731–742, 1960.
  • [2] L. Guo, An Introduction to Rota-Baxter Algebra, Surveys of Modern Mathematics, 4. International Press, Somerville, MA; Higher Education Press, Beijing, 2012.
  • [3] L. Guo, Properties of free Baxter algebras, Adv. Math. 151, 346–374, 2000.
  • [4] L. Guo and W. Keigher, Baxter algebras and shuffle products, Adv. Math. 150, 117– 149, 2000.
  • [5] L. Guo and B. Zhang, Polylogarithms and multiple zeta values from free Rota-Baxter algebras, Sci. China Math. 53 (9), 2239–2258, 2010.
  • [6] L. Guo, J.-Y. Thibon and H. Yu, Weak composition quasi-symmetric functions, Rota- Baxter algebras and Hopf algebras, Adv. Math. 344, 1–34, 2019.
  • [7] R.Q. Jian, Quasi-idempotent Rota-Baxter operators arising from quasi-idempotent elements, Lett. Math. Phys. 107, 367–374, 2017.
  • [8] R.Q. Jian and J. Zhang, Rota-Baxter coalgebras, arXiv:1409.3052.
  • [9] T.S. Ma and L.L. Liu, Rota-Baxter coalgebras and Rota-Baxter bialgebras, Linear Multilinear Algebra, 64 (5), 968–979, 2016.
  • [10] D.E. Radford, Hopf Algebras, KE Series on Knots and Everything, World Scientific, Vol. 49, New Jersey, 2012.
  • [11] G.C. Rota, Baxter algebras and combinatorial identities I, II, Bull. Amer. Math. Soc. 75 (2), 325–329, 330–334, 1969.
  • [12] E.J. Taft, The order of the antipode of finite dimensional Hopf algebra, Proc. Nat. Acad. Sci. USA. 68, 2631–2633, 1971.
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Tianshui Ma 0000-0003-1275-7214

Jie Li This is me 0000-0003-3931-7569

Haiyan Yang This is me 0000-0001-6594-8327

Publication Date February 4, 2021
Published in Issue Year 2021 Volume: 50 Issue: 1

Cite

APA Ma, T., Li, J., & Yang, H. (2021). Rota-Baxter bialgebra structures arising from (co-)quasi-idempotent elements. Hacettepe Journal of Mathematics and Statistics, 50(1), 216-223. https://doi.org/10.15672/hujms.685742
AMA Ma T, Li J, Yang H. Rota-Baxter bialgebra structures arising from (co-)quasi-idempotent elements. Hacettepe Journal of Mathematics and Statistics. February 2021;50(1):216-223. doi:10.15672/hujms.685742
Chicago Ma, Tianshui, Jie Li, and Haiyan Yang. “Rota-Baxter Bialgebra Structures Arising from (co-)quasi-Idempotent Elements”. Hacettepe Journal of Mathematics and Statistics 50, no. 1 (February 2021): 216-23. https://doi.org/10.15672/hujms.685742.
EndNote Ma T, Li J, Yang H (February 1, 2021) Rota-Baxter bialgebra structures arising from (co-)quasi-idempotent elements. Hacettepe Journal of Mathematics and Statistics 50 1 216–223.
IEEE T. Ma, J. Li, and H. Yang, “Rota-Baxter bialgebra structures arising from (co-)quasi-idempotent elements”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 1, pp. 216–223, 2021, doi: 10.15672/hujms.685742.
ISNAD Ma, Tianshui et al. “Rota-Baxter Bialgebra Structures Arising from (co-)quasi-Idempotent Elements”. Hacettepe Journal of Mathematics and Statistics 50/1 (February 2021), 216-223. https://doi.org/10.15672/hujms.685742.
JAMA Ma T, Li J, Yang H. Rota-Baxter bialgebra structures arising from (co-)quasi-idempotent elements. Hacettepe Journal of Mathematics and Statistics. 2021;50:216–223.
MLA Ma, Tianshui et al. “Rota-Baxter Bialgebra Structures Arising from (co-)quasi-Idempotent Elements”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 1, 2021, pp. 216-23, doi:10.15672/hujms.685742.
Vancouver Ma T, Li J, Yang H. Rota-Baxter bialgebra structures arising from (co-)quasi-idempotent elements. Hacettepe Journal of Mathematics and Statistics. 2021;50(1):216-23.