Research Article
BibTex RIS Cite
Year 2021, Volume: 50 Issue: 2, 453 - 470, 11.04.2021
https://doi.org/10.15672/hujms.684042

Abstract

References

  • [1] F. Al-Thukair, S. Singh and I. Zaguia, Maximal ring of quotients of an incidence algebra, Arch. Math. 80, 358–362, 2003.
  • [2] S. Esin, M. Kanuni and A. Koç, Characterization of some ring properties in incidence algebras, Comm. Algebra, 39 (10), 3836–3848, 2011.
  • [3] M. Kanuni, Dense ideals and maximal quotient rings of incidence algebras, Comm. Algebra, 31 (11), 5287–5304, 2003.
  • [4] T.Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics 189, New York-Berlin, Springer-Verlag, 1999.
  • [5] E. Spiegel, Essential ideals of incidence algebras, J. Austral. Math. Soc. (Series A), 68, 252–260, 2000.
  • [6] E. Spiegel and C.J. O’Donnell, Incidence Algebras, Monographs and Textbooks in Pure Appl. Math. 206, New York, Marcel Dekker, 1997.

The singular ideal and the socle of incidence rings

Year 2021, Volume: 50 Issue: 2, 453 - 470, 11.04.2021
https://doi.org/10.15672/hujms.684042

Abstract

Let $R$ be a ring with identity and $I(X,R)$ be the incidence ring of a locally finite partially ordered set $X$ over $R.$ In this paper, we compute the socle and the singular ideal of the incidence ring for some $X$ in terms of the socle of $R$ and the singular ideal of $R$, respectively.

References

  • [1] F. Al-Thukair, S. Singh and I. Zaguia, Maximal ring of quotients of an incidence algebra, Arch. Math. 80, 358–362, 2003.
  • [2] S. Esin, M. Kanuni and A. Koç, Characterization of some ring properties in incidence algebras, Comm. Algebra, 39 (10), 3836–3848, 2011.
  • [3] M. Kanuni, Dense ideals and maximal quotient rings of incidence algebras, Comm. Algebra, 31 (11), 5287–5304, 2003.
  • [4] T.Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics 189, New York-Berlin, Springer-Verlag, 1999.
  • [5] E. Spiegel, Essential ideals of incidence algebras, J. Austral. Math. Soc. (Series A), 68, 252–260, 2000.
  • [6] E. Spiegel and C.J. O’Donnell, Incidence Algebras, Monographs and Textbooks in Pure Appl. Math. 206, New York, Marcel Dekker, 1997.
There are 6 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Müge Kanuni Er 0000-0001-7436-039X

Özkay Özkan 0000-0001-6755-1497

Publication Date April 11, 2021
Published in Issue Year 2021 Volume: 50 Issue: 2

Cite

APA Kanuni Er, M., & Özkan, Ö. (2021). The singular ideal and the socle of incidence rings. Hacettepe Journal of Mathematics and Statistics, 50(2), 453-470. https://doi.org/10.15672/hujms.684042
AMA Kanuni Er M, Özkan Ö. The singular ideal and the socle of incidence rings. Hacettepe Journal of Mathematics and Statistics. April 2021;50(2):453-470. doi:10.15672/hujms.684042
Chicago Kanuni Er, Müge, and Özkay Özkan. “The Singular Ideal and the Socle of Incidence Rings”. Hacettepe Journal of Mathematics and Statistics 50, no. 2 (April 2021): 453-70. https://doi.org/10.15672/hujms.684042.
EndNote Kanuni Er M, Özkan Ö (April 1, 2021) The singular ideal and the socle of incidence rings. Hacettepe Journal of Mathematics and Statistics 50 2 453–470.
IEEE M. Kanuni Er and Ö. Özkan, “The singular ideal and the socle of incidence rings”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 2, pp. 453–470, 2021, doi: 10.15672/hujms.684042.
ISNAD Kanuni Er, Müge - Özkan, Özkay. “The Singular Ideal and the Socle of Incidence Rings”. Hacettepe Journal of Mathematics and Statistics 50/2 (April 2021), 453-470. https://doi.org/10.15672/hujms.684042.
JAMA Kanuni Er M, Özkan Ö. The singular ideal and the socle of incidence rings. Hacettepe Journal of Mathematics and Statistics. 2021;50:453–470.
MLA Kanuni Er, Müge and Özkay Özkan. “The Singular Ideal and the Socle of Incidence Rings”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 2, 2021, pp. 453-70, doi:10.15672/hujms.684042.
Vancouver Kanuni Er M, Özkan Ö. The singular ideal and the socle of incidence rings. Hacettepe Journal of Mathematics and Statistics. 2021;50(2):453-70.