Research Article
BibTex RIS Cite
Year 2021, Volume: 50 Issue: 3, 710 - 720, 07.06.2021
https://doi.org/10.15672/hujms.695858

Abstract

References

  • [1] A.G. Alamoush, Coefficient estimates for certain subclass of bi-univalent functions associated the Horadam polynomials, arXiv: 1812 .10589v1 [math.CV].
  • [2] A.G. Alamoush, Certain subclasses of bi-univalent functions involving the Poisson distribution associated with Haradam polynomials, Malaya J. Mat. 7 (4), 618–624, 2019.
  • [3] Ş. Altınkaya and S. Yalçın, On the Chebyshev polynomial coefficient problem of some subclasses of bi-univalent functions, Gulf J. Math. 5 (3), 34–40, 2017.
  • [4] D.A. Brannan and T.S. Taha, On some classes of bi-univalent functions, in: S. M. Mazhar, A. Hamoui, N.S. Faour (eds) Mathematical Analysis and its Applications, Kuwait, KFAS Proceedings Series 3, 53–60, 1985, Pergamon Press (Elsevier Science Limited), Oxford, 1988, see also Studia Univ. Babeş-Bolyai Math. 31 (2), 70–77, 1986.
  • [5] S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions, C R Acad. Sci. Paris Sér. I (352), 479–484, 2014.
  • [6] P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259. Springer-Verlag, New York, 1983.
  • [7] O.A. Fadipe-Joseph, B.B. Kadir, S.E. Akinwumi and E.O. Adeniran, Polynomial bounds for a class of univalent function involving sigmoid function, Khayyam J. Math. 4 (1), 88–101, 2018.
  • [8] M. Fekete and G. Szegö, Eine Bemerkung Über Ungerade Schlichte Funktionen, J. Lond. Math. Soc. 89, 85–89, 1933.
  • [9] P. Filipponi and A.F. Horadam, Derivative sequences of Fibonacci and Lucas polynomials, in: G. E. Bergum, A. N. Philippou, A. F. Horadam (eds) Applications of Fibonacci Numbers 4, 99-108, Springer, Dordrecht, 1991.
  • [10] P. Filipponi and A.F. Horadam, Second derivative sequence of Fibonacci and Lucas polynomials, Fibonacci Quart. 31, 194–204, 1993.
  • [11] A.F. Horadam and J.M. Mahon, Pell and Pell - Lucas polynomials, Fibonacci Quart. 23, 7–20, 1985.
  • [12] T. Hörzum and E. Gökçen Koçer, On some properties of Horadam polynomials, Int. Math. Forum. 4, 1243–1252, 2009.
  • [13] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18, 63–68, 1967.
  • [14] G.S. Sălăgean, Subclasses of Univalent Functions, Lecture notes in Mathematics 1013, 362–372, Springer, Berlin, 1983.
  • [15] H.M. Srivastava, Ş. Altınkaya and S. Yalçın, Certain Subclasses of bi-univalent functions associated with the Horadam polynomials, Iran J. Sci. Technol. Trans. Sci. 43, 1873–1879, 2019.
  • [16] H.M. Srivastava, A.K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23, 1188–1192, 2010.
  • [17] S.R. Swamy and Y. Sailaja, Horadam polynomial coefficient estimates for two families of holomorphic and bi-univalent functions, International Journal of Mathematics Trends and Technology 66 (8), 131–138, 2020.
  • [18] A.K. Wanas and A.A. Lupas, Applications of Horadam polynomials on Bazilevic bi-univalent function satisfying subordinate conditions, IOP Conf. Series: Journal of Physics: Conf. Series 1294, 032003, 2019. doi:10.1088/1742-6596/1294/3/032003.
  • [19] T.T. Wang and W.P. Zhang, Some identities involving Fibonacci, Lucas polynomials and their applications , Bull. Math. Soc. Sci. Math. Roumanie (New Ser.) 55 (103), 95–103, 2012.

Some special families of holomorphic and Sălăgean type bi-univalent functions associated with Horadam polynomials involving a modified sigmoid activation function

Year 2021, Volume: 50 Issue: 3, 710 - 720, 07.06.2021
https://doi.org/10.15672/hujms.695858

Abstract

The aim of this paper is to introduce some special families of holomorphic and S\u{a}l\u{a}gean type bi-univalent functions by making use of Horadam polynomials involving the modified sigmoid activation function $\phi(s)=\frac{2}{1+e^{-s} },\,s\geq0$ in the open unit disc $\mathfrak{D}$. We investigate the upper bounds on initial coefficients for functions of the form $g_{\phi}(z)=z+\sum\limits_{j=2}^{\infty}\phi(s)d_jz^j$, in these newly introduced special families and also discuss the Fekete-Szegö problem. Some interesting consequences of the results established here are also indicated.

References

  • [1] A.G. Alamoush, Coefficient estimates for certain subclass of bi-univalent functions associated the Horadam polynomials, arXiv: 1812 .10589v1 [math.CV].
  • [2] A.G. Alamoush, Certain subclasses of bi-univalent functions involving the Poisson distribution associated with Haradam polynomials, Malaya J. Mat. 7 (4), 618–624, 2019.
  • [3] Ş. Altınkaya and S. Yalçın, On the Chebyshev polynomial coefficient problem of some subclasses of bi-univalent functions, Gulf J. Math. 5 (3), 34–40, 2017.
  • [4] D.A. Brannan and T.S. Taha, On some classes of bi-univalent functions, in: S. M. Mazhar, A. Hamoui, N.S. Faour (eds) Mathematical Analysis and its Applications, Kuwait, KFAS Proceedings Series 3, 53–60, 1985, Pergamon Press (Elsevier Science Limited), Oxford, 1988, see also Studia Univ. Babeş-Bolyai Math. 31 (2), 70–77, 1986.
  • [5] S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions, C R Acad. Sci. Paris Sér. I (352), 479–484, 2014.
  • [6] P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259. Springer-Verlag, New York, 1983.
  • [7] O.A. Fadipe-Joseph, B.B. Kadir, S.E. Akinwumi and E.O. Adeniran, Polynomial bounds for a class of univalent function involving sigmoid function, Khayyam J. Math. 4 (1), 88–101, 2018.
  • [8] M. Fekete and G. Szegö, Eine Bemerkung Über Ungerade Schlichte Funktionen, J. Lond. Math. Soc. 89, 85–89, 1933.
  • [9] P. Filipponi and A.F. Horadam, Derivative sequences of Fibonacci and Lucas polynomials, in: G. E. Bergum, A. N. Philippou, A. F. Horadam (eds) Applications of Fibonacci Numbers 4, 99-108, Springer, Dordrecht, 1991.
  • [10] P. Filipponi and A.F. Horadam, Second derivative sequence of Fibonacci and Lucas polynomials, Fibonacci Quart. 31, 194–204, 1993.
  • [11] A.F. Horadam and J.M. Mahon, Pell and Pell - Lucas polynomials, Fibonacci Quart. 23, 7–20, 1985.
  • [12] T. Hörzum and E. Gökçen Koçer, On some properties of Horadam polynomials, Int. Math. Forum. 4, 1243–1252, 2009.
  • [13] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18, 63–68, 1967.
  • [14] G.S. Sălăgean, Subclasses of Univalent Functions, Lecture notes in Mathematics 1013, 362–372, Springer, Berlin, 1983.
  • [15] H.M. Srivastava, Ş. Altınkaya and S. Yalçın, Certain Subclasses of bi-univalent functions associated with the Horadam polynomials, Iran J. Sci. Technol. Trans. Sci. 43, 1873–1879, 2019.
  • [16] H.M. Srivastava, A.K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23, 1188–1192, 2010.
  • [17] S.R. Swamy and Y. Sailaja, Horadam polynomial coefficient estimates for two families of holomorphic and bi-univalent functions, International Journal of Mathematics Trends and Technology 66 (8), 131–138, 2020.
  • [18] A.K. Wanas and A.A. Lupas, Applications of Horadam polynomials on Bazilevic bi-univalent function satisfying subordinate conditions, IOP Conf. Series: Journal of Physics: Conf. Series 1294, 032003, 2019. doi:10.1088/1742-6596/1294/3/032003.
  • [19] T.T. Wang and W.P. Zhang, Some identities involving Fibonacci, Lucas polynomials and their applications , Bull. Math. Soc. Sci. Math. Roumanie (New Ser.) 55 (103), 95–103, 2012.
There are 19 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

S R Swamy 0000-0002-8088-4103

Serap Bulut 0000-0002-6506-4588

Sailaja Yerragunta 0000-0002-9155-9146

Publication Date June 7, 2021
Published in Issue Year 2021 Volume: 50 Issue: 3

Cite

APA Swamy, S. R., Bulut, S., & Yerragunta, S. (2021). Some special families of holomorphic and Sălăgean type bi-univalent functions associated with Horadam polynomials involving a modified sigmoid activation function. Hacettepe Journal of Mathematics and Statistics, 50(3), 710-720. https://doi.org/10.15672/hujms.695858
AMA Swamy SR, Bulut S, Yerragunta S. Some special families of holomorphic and Sălăgean type bi-univalent functions associated with Horadam polynomials involving a modified sigmoid activation function. Hacettepe Journal of Mathematics and Statistics. June 2021;50(3):710-720. doi:10.15672/hujms.695858
Chicago Swamy, S R, Serap Bulut, and Sailaja Yerragunta. “Some Special Families of Holomorphic and Sălăgean Type Bi-Univalent Functions Associated With Horadam Polynomials Involving a Modified Sigmoid Activation Function”. Hacettepe Journal of Mathematics and Statistics 50, no. 3 (June 2021): 710-20. https://doi.org/10.15672/hujms.695858.
EndNote Swamy SR, Bulut S, Yerragunta S (June 1, 2021) Some special families of holomorphic and Sălăgean type bi-univalent functions associated with Horadam polynomials involving a modified sigmoid activation function. Hacettepe Journal of Mathematics and Statistics 50 3 710–720.
IEEE S. R. Swamy, S. Bulut, and S. Yerragunta, “Some special families of holomorphic and Sălăgean type bi-univalent functions associated with Horadam polynomials involving a modified sigmoid activation function”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 3, pp. 710–720, 2021, doi: 10.15672/hujms.695858.
ISNAD Swamy, S R et al. “Some Special Families of Holomorphic and Sălăgean Type Bi-Univalent Functions Associated With Horadam Polynomials Involving a Modified Sigmoid Activation Function”. Hacettepe Journal of Mathematics and Statistics 50/3 (June 2021), 710-720. https://doi.org/10.15672/hujms.695858.
JAMA Swamy SR, Bulut S, Yerragunta S. Some special families of holomorphic and Sălăgean type bi-univalent functions associated with Horadam polynomials involving a modified sigmoid activation function. Hacettepe Journal of Mathematics and Statistics. 2021;50:710–720.
MLA Swamy, S R et al. “Some Special Families of Holomorphic and Sălăgean Type Bi-Univalent Functions Associated With Horadam Polynomials Involving a Modified Sigmoid Activation Function”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 3, 2021, pp. 710-2, doi:10.15672/hujms.695858.
Vancouver Swamy SR, Bulut S, Yerragunta S. Some special families of holomorphic and Sălăgean type bi-univalent functions associated with Horadam polynomials involving a modified sigmoid activation function. Hacettepe Journal of Mathematics and Statistics. 2021;50(3):710-2.

Cited By