Research Article
BibTex RIS Cite

An extension of Lucas identity via Pascal's triangle

Year 2021, Volume: 50 Issue: 3, 647 - 658, 07.06.2021
https://doi.org/10.15672/hujms.744408

Abstract

The Fibonacci sequence can be obtained by drawing diagonals in a Pascal’s triangle, and from this, we can obtain the Lucas identity. An investigation on the behavior of certain kinds of other diagonals inside a Pascal’s triangle identifies a new family of recursive sequences: the $k$-Padovan sequences. This family both contains the Fibonacci and the Padovan sequences. A general binomial identity for $k$-Padovan sequences which extends both the well-known Lucas identity and the less known Padovan identity is derived.

References

  • [1] Z. Akyuz and S. Halici, On some combinatorial identities involving the terms of generalized Fibonacci and Lucas sequences, Hacet. J. Math. Stat. 42 (4), 431–435, 2013.
  • [2] G. Anatriello and G. Vincenzi, Tribonacci-like sequences and generalized Pascal’s triangles, Internat. J. Math. Ed. Sci. Tech. 45 (8), 1220–1232, 2014.
  • [3] G. Anatriello and G. Vincenzi, Padovan-like sequences and generalized Pascal’s Triangles, An. Ştiinţ. Univ. Al. I. Cuza Iaşi, LXVI (f1), 25–35, 2020.
  • [4] H. Belbachir, T. Komatsu and L. Szalay, Linear recurrences associated to rays in Pascal’s triangle and combinatorial identities, Math. Slovaca 64, 287–300, 2014.
  • [5] J.H. Conway and R.K. Guy, The Book of Numbers, World Scientific, Singapore, 2008.
  • [6] A. Fiorenza and G. Vincenzi, Limit of ratio of consecutive terms for general order-k linear homogeneous recurrences with constant coefficients, Chaos Solitons Fractals 44, 147–152, 2011.
  • [7] N. Gogin and A. Mylläri, Padovan-like sequences and Bell polynomials, Math. Comput. Simulation 125, 168–177, 2016.
  • [8] S. Halici and A. Karataş, On a generalization for Fibonacci quaternions, Chaos Solitons Fractals 98, 178–182, 2017.
  • [9] A. Ipek, On (p, q)-Fibonacci quaternions and their Binet’ s Formulas, generating functions and certain binomial sums, Adv. Appl. Clifford Algebras 27 (2), 1343–1351, 2017.
  • [10] G. Kallós , A generalization of Pascal’s triangle using powers of base numbers, Ann. Math. Blaise Pascal 13 (1), 1–15, 2006.
  • [11] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley–Interscience, New York, 2001.
  • [12] L. Maronhič, Plastic Number: Construction and Applications, 5th Virtual International Conference on Advanced Research in Scientific Areas (ARSA-2016) Slovakia, November 7–11, 2016.
  • [13] L. Németh, The trinomial transform triangle, J. Integer Seq. 21 (7), Art. 18.7.3, pp18, 2018.
  • [14] L. Németh and L. Szalay, Recurrence sequences in the hyperbolic Pascal triangle corresponding to the regular mosaic 4,5, Ann. Math. Inform. 46, 165–173, 2016.
  • [15] M.J. Ostwald, Under siege: the golden mean in architecture, Nexus Netw. J. 2, 75–81, 2000.
  • [16] R. Padovan, Proportion: Science, Philosophy, Architecture,1-st Edition, Taylor and Francis, London and New York, 1999.
  • [17] R. Padovan, Dom Hans van der Laan and the Plastic Number, in:Williams K., Ostwald M. (eds) Architecture and Mathematics from Antiquity to the Future, Birkhäuser, 407–419, 2015.
  • [18] P. Szalapaj, Contemporary Architecture and the Digital Design Process, Routledge- Architectural press, New York, 2005.
  • [19] A. Szynal-Liana and I. Wloch, The Fibonacci hybrid numbers, Util. Math. 110, 3–10, 2019.
  • [20] A.G. Shannon, Tribonacci numbers and Pascal’s Pyramid, Fibonacci Quart. 15, 268– 275, 1977.
  • [21] A.G. Shannon, P.G. Anderson and A.F. Horadam, Properties of Cordonnier, Perrin and van der Laan numbers, Int. J. Math. Educ. Sci. Technol. 37 (7), 825–831, 2006.
  • [22] M.Z. Spivey, The Art of Proving Binomial Identities, CRC Press (Taylor and Francis Group), A. Chapman and Hall Book. Boca Raton (FL), 2019.
  • [23] G. Vincenzi and S. Siani, Fibonacci-like sequences and generalized Pascal’s triangles. Int. J. Math. Educ. Sci. Technol. 45 (4), 609–614, 2014.
  • [24] S.-L. Yang, Some identities involving the binomial sequences, Discrete Math. 308 (1), 51–58, 2008.
Year 2021, Volume: 50 Issue: 3, 647 - 658, 07.06.2021
https://doi.org/10.15672/hujms.744408

Abstract

References

  • [1] Z. Akyuz and S. Halici, On some combinatorial identities involving the terms of generalized Fibonacci and Lucas sequences, Hacet. J. Math. Stat. 42 (4), 431–435, 2013.
  • [2] G. Anatriello and G. Vincenzi, Tribonacci-like sequences and generalized Pascal’s triangles, Internat. J. Math. Ed. Sci. Tech. 45 (8), 1220–1232, 2014.
  • [3] G. Anatriello and G. Vincenzi, Padovan-like sequences and generalized Pascal’s Triangles, An. Ştiinţ. Univ. Al. I. Cuza Iaşi, LXVI (f1), 25–35, 2020.
  • [4] H. Belbachir, T. Komatsu and L. Szalay, Linear recurrences associated to rays in Pascal’s triangle and combinatorial identities, Math. Slovaca 64, 287–300, 2014.
  • [5] J.H. Conway and R.K. Guy, The Book of Numbers, World Scientific, Singapore, 2008.
  • [6] A. Fiorenza and G. Vincenzi, Limit of ratio of consecutive terms for general order-k linear homogeneous recurrences with constant coefficients, Chaos Solitons Fractals 44, 147–152, 2011.
  • [7] N. Gogin and A. Mylläri, Padovan-like sequences and Bell polynomials, Math. Comput. Simulation 125, 168–177, 2016.
  • [8] S. Halici and A. Karataş, On a generalization for Fibonacci quaternions, Chaos Solitons Fractals 98, 178–182, 2017.
  • [9] A. Ipek, On (p, q)-Fibonacci quaternions and their Binet’ s Formulas, generating functions and certain binomial sums, Adv. Appl. Clifford Algebras 27 (2), 1343–1351, 2017.
  • [10] G. Kallós , A generalization of Pascal’s triangle using powers of base numbers, Ann. Math. Blaise Pascal 13 (1), 1–15, 2006.
  • [11] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley–Interscience, New York, 2001.
  • [12] L. Maronhič, Plastic Number: Construction and Applications, 5th Virtual International Conference on Advanced Research in Scientific Areas (ARSA-2016) Slovakia, November 7–11, 2016.
  • [13] L. Németh, The trinomial transform triangle, J. Integer Seq. 21 (7), Art. 18.7.3, pp18, 2018.
  • [14] L. Németh and L. Szalay, Recurrence sequences in the hyperbolic Pascal triangle corresponding to the regular mosaic 4,5, Ann. Math. Inform. 46, 165–173, 2016.
  • [15] M.J. Ostwald, Under siege: the golden mean in architecture, Nexus Netw. J. 2, 75–81, 2000.
  • [16] R. Padovan, Proportion: Science, Philosophy, Architecture,1-st Edition, Taylor and Francis, London and New York, 1999.
  • [17] R. Padovan, Dom Hans van der Laan and the Plastic Number, in:Williams K., Ostwald M. (eds) Architecture and Mathematics from Antiquity to the Future, Birkhäuser, 407–419, 2015.
  • [18] P. Szalapaj, Contemporary Architecture and the Digital Design Process, Routledge- Architectural press, New York, 2005.
  • [19] A. Szynal-Liana and I. Wloch, The Fibonacci hybrid numbers, Util. Math. 110, 3–10, 2019.
  • [20] A.G. Shannon, Tribonacci numbers and Pascal’s Pyramid, Fibonacci Quart. 15, 268– 275, 1977.
  • [21] A.G. Shannon, P.G. Anderson and A.F. Horadam, Properties of Cordonnier, Perrin and van der Laan numbers, Int. J. Math. Educ. Sci. Technol. 37 (7), 825–831, 2006.
  • [22] M.Z. Spivey, The Art of Proving Binomial Identities, CRC Press (Taylor and Francis Group), A. Chapman and Hall Book. Boca Raton (FL), 2019.
  • [23] G. Vincenzi and S. Siani, Fibonacci-like sequences and generalized Pascal’s triangles. Int. J. Math. Educ. Sci. Technol. 45 (4), 609–614, 2014.
  • [24] S.-L. Yang, Some identities involving the binomial sequences, Discrete Math. 308 (1), 51–58, 2008.
There are 24 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Giuseppina Anatrıello 0000-0003-2168-8169

Giovanni Vincenzi This is me 0000-0002-3869-885X

Publication Date June 7, 2021
Published in Issue Year 2021 Volume: 50 Issue: 3

Cite

APA Anatrıello, G., & Vincenzi, G. (2021). An extension of Lucas identity via Pascal’s triangle. Hacettepe Journal of Mathematics and Statistics, 50(3), 647-658. https://doi.org/10.15672/hujms.744408
AMA Anatrıello G, Vincenzi G. An extension of Lucas identity via Pascal’s triangle. Hacettepe Journal of Mathematics and Statistics. June 2021;50(3):647-658. doi:10.15672/hujms.744408
Chicago Anatrıello, Giuseppina, and Giovanni Vincenzi. “An Extension of Lucas Identity via Pascal’s Triangle”. Hacettepe Journal of Mathematics and Statistics 50, no. 3 (June 2021): 647-58. https://doi.org/10.15672/hujms.744408.
EndNote Anatrıello G, Vincenzi G (June 1, 2021) An extension of Lucas identity via Pascal’s triangle. Hacettepe Journal of Mathematics and Statistics 50 3 647–658.
IEEE G. Anatrıello and G. Vincenzi, “An extension of Lucas identity via Pascal’s triangle”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 3, pp. 647–658, 2021, doi: 10.15672/hujms.744408.
ISNAD Anatrıello, Giuseppina - Vincenzi, Giovanni. “An Extension of Lucas Identity via Pascal’s Triangle”. Hacettepe Journal of Mathematics and Statistics 50/3 (June 2021), 647-658. https://doi.org/10.15672/hujms.744408.
JAMA Anatrıello G, Vincenzi G. An extension of Lucas identity via Pascal’s triangle. Hacettepe Journal of Mathematics and Statistics. 2021;50:647–658.
MLA Anatrıello, Giuseppina and Giovanni Vincenzi. “An Extension of Lucas Identity via Pascal’s Triangle”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 3, 2021, pp. 647-58, doi:10.15672/hujms.744408.
Vancouver Anatrıello G, Vincenzi G. An extension of Lucas identity via Pascal’s triangle. Hacettepe Journal of Mathematics and Statistics. 2021;50(3):647-58.