An extension of Lucas identity via Pascal's triangle
Year 2021,
Volume: 50 Issue: 3, 647 - 658, 07.06.2021
Giuseppina Anatrıello
,
Giovanni Vincenzi
Abstract
The Fibonacci sequence can be obtained by drawing diagonals in a Pascal’s triangle, and from this, we can obtain the Lucas identity. An investigation on the behavior of certain kinds of other diagonals inside a Pascal’s triangle identifies a new family of recursive sequences: the $k$-Padovan sequences. This family both contains the Fibonacci and the Padovan sequences. A general binomial identity for $k$-Padovan sequences which extends both the well-known Lucas identity and the less known Padovan identity is derived.
References
- [1] Z. Akyuz and S. Halici, On some combinatorial identities involving the terms of
generalized Fibonacci and Lucas sequences, Hacet. J. Math. Stat. 42 (4), 431–435,
2013.
- [2] G. Anatriello and G. Vincenzi, Tribonacci-like sequences and generalized Pascal’s
triangles, Internat. J. Math. Ed. Sci. Tech. 45 (8), 1220–1232, 2014.
- [3] G. Anatriello and G. Vincenzi, Padovan-like sequences and generalized Pascal’s Triangles,
An. Ştiinţ. Univ. Al. I. Cuza Iaşi, LXVI (f1), 25–35, 2020.
- [4] H. Belbachir, T. Komatsu and L. Szalay, Linear recurrences associated to rays in
Pascal’s triangle and combinatorial identities, Math. Slovaca 64, 287–300, 2014.
- [5] J.H. Conway and R.K. Guy, The Book of Numbers, World Scientific, Singapore, 2008.
- [6] A. Fiorenza and G. Vincenzi, Limit of ratio of consecutive terms for general order-k
linear homogeneous recurrences with constant coefficients, Chaos Solitons Fractals 44,
147–152, 2011.
- [7] N. Gogin and A. Mylläri, Padovan-like sequences and Bell polynomials, Math. Comput.
Simulation 125, 168–177, 2016.
- [8] S. Halici and A. Karataş, On a generalization for Fibonacci quaternions, Chaos Solitons
Fractals 98, 178–182, 2017.
- [9] A. Ipek, On (p, q)-Fibonacci quaternions and their Binet’ s Formulas, generating
functions and certain binomial sums, Adv. Appl. Clifford Algebras 27 (2), 1343–1351,
2017.
- [10] G. Kallós , A generalization of Pascal’s triangle using powers of base numbers, Ann.
Math. Blaise Pascal 13 (1), 1–15, 2006.
- [11] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley–Interscience, New
York, 2001.
- [12] L. Maronhič, Plastic Number: Construction and Applications, 5th Virtual International
Conference on Advanced Research in Scientific Areas (ARSA-2016) Slovakia,
November 7–11, 2016.
- [13] L. Németh, The trinomial transform triangle, J. Integer Seq. 21 (7), Art. 18.7.3,
pp18, 2018.
- [14] L. Németh and L. Szalay, Recurrence sequences in the hyperbolic Pascal triangle corresponding
to the regular mosaic 4,5, Ann. Math. Inform. 46, 165–173, 2016.
- [15] M.J. Ostwald, Under siege: the golden mean in architecture, Nexus Netw. J. 2, 75–81,
2000.
- [16] R. Padovan, Proportion: Science, Philosophy, Architecture,1-st Edition, Taylor and
Francis, London and New York, 1999.
- [17] R. Padovan, Dom Hans van der Laan and the Plastic Number, in:Williams K.,
Ostwald M. (eds) Architecture and Mathematics from Antiquity to the Future,
Birkhäuser, 407–419, 2015.
- [18] P. Szalapaj, Contemporary Architecture and the Digital Design Process, Routledge-
Architectural press, New York, 2005.
- [19] A. Szynal-Liana and I. Wloch, The Fibonacci hybrid numbers, Util. Math. 110, 3–10,
2019.
- [20] A.G. Shannon, Tribonacci numbers and Pascal’s Pyramid, Fibonacci Quart. 15, 268–
275, 1977.
- [21] A.G. Shannon, P.G. Anderson and A.F. Horadam, Properties of Cordonnier, Perrin
and van der Laan numbers, Int. J. Math. Educ. Sci. Technol. 37 (7), 825–831, 2006.
- [22] M.Z. Spivey, The Art of Proving Binomial Identities, CRC Press (Taylor and Francis
Group), A. Chapman and Hall Book. Boca Raton (FL), 2019.
- [23] G. Vincenzi and S. Siani, Fibonacci-like sequences and generalized Pascal’s triangles.
Int. J. Math. Educ. Sci. Technol. 45 (4), 609–614, 2014.
- [24] S.-L. Yang, Some identities involving the binomial sequences, Discrete Math. 308 (1),
51–58, 2008.
Year 2021,
Volume: 50 Issue: 3, 647 - 658, 07.06.2021
Giuseppina Anatrıello
,
Giovanni Vincenzi
References
- [1] Z. Akyuz and S. Halici, On some combinatorial identities involving the terms of
generalized Fibonacci and Lucas sequences, Hacet. J. Math. Stat. 42 (4), 431–435,
2013.
- [2] G. Anatriello and G. Vincenzi, Tribonacci-like sequences and generalized Pascal’s
triangles, Internat. J. Math. Ed. Sci. Tech. 45 (8), 1220–1232, 2014.
- [3] G. Anatriello and G. Vincenzi, Padovan-like sequences and generalized Pascal’s Triangles,
An. Ştiinţ. Univ. Al. I. Cuza Iaşi, LXVI (f1), 25–35, 2020.
- [4] H. Belbachir, T. Komatsu and L. Szalay, Linear recurrences associated to rays in
Pascal’s triangle and combinatorial identities, Math. Slovaca 64, 287–300, 2014.
- [5] J.H. Conway and R.K. Guy, The Book of Numbers, World Scientific, Singapore, 2008.
- [6] A. Fiorenza and G. Vincenzi, Limit of ratio of consecutive terms for general order-k
linear homogeneous recurrences with constant coefficients, Chaos Solitons Fractals 44,
147–152, 2011.
- [7] N. Gogin and A. Mylläri, Padovan-like sequences and Bell polynomials, Math. Comput.
Simulation 125, 168–177, 2016.
- [8] S. Halici and A. Karataş, On a generalization for Fibonacci quaternions, Chaos Solitons
Fractals 98, 178–182, 2017.
- [9] A. Ipek, On (p, q)-Fibonacci quaternions and their Binet’ s Formulas, generating
functions and certain binomial sums, Adv. Appl. Clifford Algebras 27 (2), 1343–1351,
2017.
- [10] G. Kallós , A generalization of Pascal’s triangle using powers of base numbers, Ann.
Math. Blaise Pascal 13 (1), 1–15, 2006.
- [11] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley–Interscience, New
York, 2001.
- [12] L. Maronhič, Plastic Number: Construction and Applications, 5th Virtual International
Conference on Advanced Research in Scientific Areas (ARSA-2016) Slovakia,
November 7–11, 2016.
- [13] L. Németh, The trinomial transform triangle, J. Integer Seq. 21 (7), Art. 18.7.3,
pp18, 2018.
- [14] L. Németh and L. Szalay, Recurrence sequences in the hyperbolic Pascal triangle corresponding
to the regular mosaic 4,5, Ann. Math. Inform. 46, 165–173, 2016.
- [15] M.J. Ostwald, Under siege: the golden mean in architecture, Nexus Netw. J. 2, 75–81,
2000.
- [16] R. Padovan, Proportion: Science, Philosophy, Architecture,1-st Edition, Taylor and
Francis, London and New York, 1999.
- [17] R. Padovan, Dom Hans van der Laan and the Plastic Number, in:Williams K.,
Ostwald M. (eds) Architecture and Mathematics from Antiquity to the Future,
Birkhäuser, 407–419, 2015.
- [18] P. Szalapaj, Contemporary Architecture and the Digital Design Process, Routledge-
Architectural press, New York, 2005.
- [19] A. Szynal-Liana and I. Wloch, The Fibonacci hybrid numbers, Util. Math. 110, 3–10,
2019.
- [20] A.G. Shannon, Tribonacci numbers and Pascal’s Pyramid, Fibonacci Quart. 15, 268–
275, 1977.
- [21] A.G. Shannon, P.G. Anderson and A.F. Horadam, Properties of Cordonnier, Perrin
and van der Laan numbers, Int. J. Math. Educ. Sci. Technol. 37 (7), 825–831, 2006.
- [22] M.Z. Spivey, The Art of Proving Binomial Identities, CRC Press (Taylor and Francis
Group), A. Chapman and Hall Book. Boca Raton (FL), 2019.
- [23] G. Vincenzi and S. Siani, Fibonacci-like sequences and generalized Pascal’s triangles.
Int. J. Math. Educ. Sci. Technol. 45 (4), 609–614, 2014.
- [24] S.-L. Yang, Some identities involving the binomial sequences, Discrete Math. 308 (1),
51–58, 2008.