Research Article
BibTex RIS Cite

Finite-dimensional Leibniz algebra representations of $\mathfrak{sl}_2$

Year 2021, Volume: 50 Issue: 3, 845 - 854, 07.06.2021
https://doi.org/10.15672/hujms.788994

Abstract

All finite-dimensional Leibniz algebra bimodules of a Lie algebra $\mathfrak{sl}_2$ over a field of characteristic zero are described.

Supporting Institution

Karakalpak State University

Project Number

ОТ-4-27

References

  • [1] D. Barnes, Some Theorems on Leibniz algebras, Comm. Algebra, 39, 2463–2472, 2011.
  • [2] A. Bloh, On a generalization of the concept of Lie algebra, Dokl. Akad. Nauk SSSR, 165, 471–473, 1965.
  • [3] A.M. Bloh, A certain generalization of the concept of Lie algebra, Uch. Zap. Moskov. Gos. Ped. Inst. 375, 9–20, 1971 (in Russian).
  • [4] A.S. Dzhumadil’daev and A.S. Abdukassymova, Leibniz algebras in characteristic p, C.R.Acad.sci.Paris Ser. I Math. 332 (12), 1047–1052, 2001.
  • [5] P. Gabriel, Unzerlegbare Darstellungen, I, Manuscripta Math. 6, 71–103, 1972.
  • [6] N. Jacobson, Lie algebras, Interscience Publishers, Wiley, New York, 1962.
  • [7] T. Kurbanbaev and R. Turdibaev, Some Leibniz bimodules of sl2, J. Algebra Appl. 19 (4), 2050064, 2020.
  • [8] J.-L. Loday, Cyclic homology, Grundl. Math. Wiss. Bd. 301, Springer-Verlag, Berlin, 1992.
  • [9] J.-L. Loday and T. Pirashvili, Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann. 296, 139–158, 1993.
  • [10] J.-L. Loday and T. Pirashvili, Leibniz representations of Lie algebras, J. Algebra, 181 (2), 414–425, 1996.
  • [11] R. Martinez-Villa, Algebras Stably Equivalent to l-Hereditary, Springer Lecture Notes in Math., 832, pp. 396–431, Springer-Verlag, New York/Berlin, 1980.
Year 2021, Volume: 50 Issue: 3, 845 - 854, 07.06.2021
https://doi.org/10.15672/hujms.788994

Abstract

Project Number

ОТ-4-27

References

  • [1] D. Barnes, Some Theorems on Leibniz algebras, Comm. Algebra, 39, 2463–2472, 2011.
  • [2] A. Bloh, On a generalization of the concept of Lie algebra, Dokl. Akad. Nauk SSSR, 165, 471–473, 1965.
  • [3] A.M. Bloh, A certain generalization of the concept of Lie algebra, Uch. Zap. Moskov. Gos. Ped. Inst. 375, 9–20, 1971 (in Russian).
  • [4] A.S. Dzhumadil’daev and A.S. Abdukassymova, Leibniz algebras in characteristic p, C.R.Acad.sci.Paris Ser. I Math. 332 (12), 1047–1052, 2001.
  • [5] P. Gabriel, Unzerlegbare Darstellungen, I, Manuscripta Math. 6, 71–103, 1972.
  • [6] N. Jacobson, Lie algebras, Interscience Publishers, Wiley, New York, 1962.
  • [7] T. Kurbanbaev and R. Turdibaev, Some Leibniz bimodules of sl2, J. Algebra Appl. 19 (4), 2050064, 2020.
  • [8] J.-L. Loday, Cyclic homology, Grundl. Math. Wiss. Bd. 301, Springer-Verlag, Berlin, 1992.
  • [9] J.-L. Loday and T. Pirashvili, Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann. 296, 139–158, 1993.
  • [10] J.-L. Loday and T. Pirashvili, Leibniz representations of Lie algebras, J. Algebra, 181 (2), 414–425, 1996.
  • [11] R. Martinez-Villa, Algebras Stably Equivalent to l-Hereditary, Springer Lecture Notes in Math., 832, pp. 396–431, Springer-Verlag, New York/Berlin, 1980.
There are 11 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Tuuelbay Kurbanbaev 0000-0002-9963-872X

Rustam Turdibaev This is me 0000-0002-0706-8169

Project Number ОТ-4-27
Publication Date June 7, 2021
Published in Issue Year 2021 Volume: 50 Issue: 3

Cite

APA Kurbanbaev, T., & Turdibaev, R. (2021). Finite-dimensional Leibniz algebra representations of $\mathfrak{sl}_2$. Hacettepe Journal of Mathematics and Statistics, 50(3), 845-854. https://doi.org/10.15672/hujms.788994
AMA Kurbanbaev T, Turdibaev R. Finite-dimensional Leibniz algebra representations of $\mathfrak{sl}_2$. Hacettepe Journal of Mathematics and Statistics. June 2021;50(3):845-854. doi:10.15672/hujms.788994
Chicago Kurbanbaev, Tuuelbay, and Rustam Turdibaev. “Finite-Dimensional Leibniz Algebra Representations of $\mathfrak{sl}_2$”. Hacettepe Journal of Mathematics and Statistics 50, no. 3 (June 2021): 845-54. https://doi.org/10.15672/hujms.788994.
EndNote Kurbanbaev T, Turdibaev R (June 1, 2021) Finite-dimensional Leibniz algebra representations of $\mathfrak{sl}_2$. Hacettepe Journal of Mathematics and Statistics 50 3 845–854.
IEEE T. Kurbanbaev and R. Turdibaev, “Finite-dimensional Leibniz algebra representations of $\mathfrak{sl}_2$”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 3, pp. 845–854, 2021, doi: 10.15672/hujms.788994.
ISNAD Kurbanbaev, Tuuelbay - Turdibaev, Rustam. “Finite-Dimensional Leibniz Algebra Representations of $\mathfrak{sl}_2$”. Hacettepe Journal of Mathematics and Statistics 50/3 (June 2021), 845-854. https://doi.org/10.15672/hujms.788994.
JAMA Kurbanbaev T, Turdibaev R. Finite-dimensional Leibniz algebra representations of $\mathfrak{sl}_2$. Hacettepe Journal of Mathematics and Statistics. 2021;50:845–854.
MLA Kurbanbaev, Tuuelbay and Rustam Turdibaev. “Finite-Dimensional Leibniz Algebra Representations of $\mathfrak{sl}_2$”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 3, 2021, pp. 845-54, doi:10.15672/hujms.788994.
Vancouver Kurbanbaev T, Turdibaev R. Finite-dimensional Leibniz algebra representations of $\mathfrak{sl}_2$. Hacettepe Journal of Mathematics and Statistics. 2021;50(3):845-54.