Year 2021,
Volume: 50 Issue: 5, 1225 - 1250, 15.10.2021
Kazim İlhan Ikeda
,
Erol Serbest
References
- [1] A. Abbes and T. Saito, Ramification of local fields with imperfect residue fields, Amer.
J. Math. 124 (5), 879–920, 2002.
- [2] E. Artin and J. Tate, Class Field Theory, AMS Chelsea Publishing, Vol.366, American
Mathematical Society, Providence, Rhode Island, 2008.
- [3] C. Barwick and P. Heine, Pyknotic objects I. Basic notions, arXiv:1904.09966
[math.AG], 2019. Retrieved November 30, 2020, from the arXiv database.
- [4] S. Bloch, Algebraic K-theory and class field theory for arithmetic surfaces, Ann. Math.
114, 229–266, 1981.
- [5] O. Braunling, M. Groechenig and J. Wolfson, Geometric and analytic structures on
higher adèles, Res. Math. Sci. 3, Paper No. 22, 56 pages, 2016.
- [6] A. Cámara, Topology on rational points over n-local fields, Rev. R. Acad. Cienc.
Exactas Fís. Nat. Ser. A Math. RACSAM 110 (2), 417-432, 2016.
- [7] I.B. Fesenko, Class field theory of multi-dimensional local fields of characteristic zero,
with residue field of positive characteristic, Algebra i Analiz 3 (3), 165-196, 1991.
- [8] I.B. Fesenko, On class field theory of multi-dimensional local fields of positive characteristic,
Algebraic K-theory, Adv. Soviet Math., Vol. 4, Amer. Math. Soc., Providence,
RI, 1991, 103-127.
- [9] I.B. Fesenko, Multi-dimensional local class field theory, Dokl. Akad. Nauk SSSR 318 (1),
47-50, 1991.
- [10] I.B. Fesenko, Abelian local p-class field theory, Math. Anal. 301, 561-586, 1995.
- [11] I.B. Fesenko, Abelian extensions of complete discrete valuation fields, Number Theory:
Séminaire de Théorie des Nombres de Paris 1993-94 (Sinnou David ed.), Cambridge
Univ. Press, Cambridge, 47-74, 1996.
- [12] I.B. Fesenko, Topological Milnor K-groups of higher local fields, Invitation to Higher Local
Fields (Ed. I. B. Fesenko, M. Kurihara), Geometry & Topology Monographs 3,
Warwick, 61-74, 2000.
- [13] I.B. Fesenko, Explicit higher local class field theory, Invitation to Higher Local Fields (Ed.
I. B. Fesenko, M. Kurihara), Geometry & Topology Monographs 3, Warwick, 95-101,
2000.
- [14] I.B. Fesenko, Sequential topologies and quotients of the Milnor K-groups of higher local
fields, Algebra i Analiz 13 (3), 198–221, 2001.
- [15] I.B. Fesenko and S.V. Vostokov, Local Fields and Their Extensions (2nd ed.), AMS
Translations of Mathematical Monographs 121, AMS, Providence, Rhode Island,
2002.
- [16] H. Hasse, Die Normenresttheorie relative-Abelscher Zahlkörper als Klassenkörper im
Kleinen, J. Reine Angew. Math. (Crelle) 162, 145-154, 1930.
- [17] M. Hazewinkel, Local class field theory is easy, Advances in Math. 18 (2), 148-181,
1975.
- [18] A. Huber, On the Parshin-Be˘ılinson adèles for schemes, Abh. Math. Sem. Univ.
Hamburg 61, 249–273, 1991.
- [19] O. Hyodo, Wild ramification in the imperfect residue field case, Galois Groups and
Their Representations (Nagoya, 1981), Adv. Stud. Pure Math. 2, North-Holland,
Amsterdam, 287–314, 1983.
- [20] K.I. Ikeda and E. Serbest, Local non-abelian Kato-Parshin reciprocity law, in preparation.
- [21] K. Iwasawa, Local Class Field Theory, Oxford Mathematical Monographs, Oxford
Univ. Press., Clarendon, 1986.
- [22] K. Kato, A generalization of local class field theory by using K-groups I, II, III, J.
Fac. Sci. Univ. Tokyo Sect. IA Math. 26, 303-376, 1979; 27, 603-683, 1980; 29, 31-43,
1982.
- [23] K. Kato, Vanishing cycles, ramification of valuations, and class field theory, Duke
Math. J. 55 (3), 629-659, 1987.
- [24] K. Kato, Swan conductors for characters of degree one in the imperfect residue field
case, Algebraic K-theory and Algebraic Number Theory (Honolulu, HI, 1987), Contemp.
Math. 83, Amer. Math. Soc., Providence, RI, 101-131, 1989.
- [25] K. Kato, Existence theorem for higher local fields, Invitation to Higher Local Fields
(Ed. I. B. Fesenko, M. Kurihara), Geometry & Topology Monographs 3, Warwick,
165-195, 2000.
- [26] K. Kato and S. Saito, Two-dimensional class field theory, Galois Groups and Their
Representations (Nagoya, 1981), Adv. Stud. Pure Math. 2, North-Holland, Amsterdam,
103–152, 1983.
- [27] K. Kato and S. Saito, Global class field theory of arithmetic schemes, Applications of Algebraic
K-theory to Algebraic Geometry and Number Theory, Part I, II (Boulder, Colorado,
1983), Contemp. Math., 55, Amer. Math. Soc., Providence, RI, 255–331, 1986.
- [28] K. Kato and T. Saito Coincidence of two Swan conductors of abelian characters,
Épijournal Géom. Algébrique 3, Art. 15, 16 pp, 2019.
- [29] Y. Kawada and I. Satake, Class formations II, J. Fac. Sci. Univ. Tokyo 7, 453-490,
1955.
- [30] Y. Koya, A generalization of class formation by using hypercohomology, Invent. Math.
101, 705-715, 1990.
- [31] Y. Koya, A generalization of Tate-Nakayama theorem by using hypercohomology, Proc.
Japan Acad., Ser. A 69 (3), 53-57, 1993.
- [32] Y. Koya, Class field theory without theorem 90, Algebra Colloq. 1 (4), 347-358, 1994.
- [33] K. Kurano and K. Shimomoto, An elementary proof of the Cohen-Gabber theorem in
the equal characteristic p > 0 case, Tohoku Math. J. 70, 377-389, 2018.
- [34] S. Lichtenbaum, The construction of weight-two arithmetic cohomology, Invent. Math.
88, 183-215, 1987.
- [35] V.G. Lomadze, On the ramification theory of two-dimensional local fields, Math.
USSR Sbornik 37, 349–365, 1980.
- [36] A.I. Madunts and I.B. Zhukov, Multi-dimensional complete fields : Topology and
other basic constructions, Trudy S.-Peterb. Mat. Obshch. 1995, English translation
in Amer. Math. Soc. Transl. (Ser. 2)165, 1-34, 1995.
- [37] M. Morrow, An introduction to higher dimensional local fields and adèles,
arXiv:1204.0586v2 [math.AG], 2012. Retrieved October 25, 2020, from the arXiv
database.
- [38] M. Morrow, Continuity of the norm map on Milnor K-theory, J. K-Theory 9 (3), 565–
577, 2012.
- [39] J. Neukirch, Neubegründung der Klassenkörpertheorie, Math. Z. 186, 557–574, 1984.
- [40] J. Neukirch, Class Field Theory, Springer-Verlag, Berlin, 1986.
- [41] D.V. Osipov, n-dimensional local fields and adèles on n-dimensional schemes, Surveys
in Contemporary Mathematics, London Math. Soc. Lecture Note Ser., 347,
Cambridge Univ. Press, Cambridge, 131–164, 2008.
- [42] A.N. Parshin, Class fields and algebraic K-theory, Uspekhi Mat. Nauk 30 (1), 253–
254, 1975.
- [43] A.N. Parshin, On the arithmetic of two-dimensional schemes. I. Distributions and residues,
Izv. Akad. Nauk SSSR Ser. Mat. 40 (4), 736–773, 1976.
- [44] A.N. Parshin, Abelian coverings of arithmetic schemes, Sov. Math., Dokl. 19, 1438-1442,
1978.
- [45] A.N. Parshin, Local class field theory, Trudy Mat. Inst. Steklov 165, 143-170, 1985.
- [46] P. Scholze, Lectures on Condensed Mathematics–Joint work with D. Clausen, Bonn
Lectures, 2019.
- [47] M. Spiess, Class formations and higher dimensional local class field theory, Journal
of Number Theory 62, 273–283, 1997.
- [48] J. Tate, The higher dimensional cohomology groups of class field theory, Ann. of Math.
(2nd Series) 56, 294-297, 1952.
- [49] L. Xiao and I. B. Zhukov, Ramification of higher local fields, approaches and questions,
Algebra i Analiz 26 (5), 1-63, 2014.
- [50] I.B. Zhukov, Higher dimensional local fields, Invitation to Higher Local Fields (Münster,
1999) (Ed. I. B. Fesenko, M. Kurihara), Geom. Topol. Monogr. 3, Geom. Topol.
Publ., Coventry, 5-18, 2000.
- [51] I.B. Zhukov, An approach to higher ramification theory, Invitation to Higher Local Fields
(Münster, 1999) (Ed. I. B. Fesenko, M. Kurihara), Geom. Topol. Monogr., 3, Geom.
Topol. Publ., Coventry, 143-150, 2000.
Local abelian Kato-Parshin reciprocity law: A survey
Year 2021,
Volume: 50 Issue: 5, 1225 - 1250, 15.10.2021
Kazim İlhan Ikeda
,
Erol Serbest
Abstract
Let $K$ denote an $n$-dimensional local field. The aim of this expository paper is to survey the basic arithmetic theory of the $n$-dimensional local field $K$ together with its Milnor $K$-theory and Parshin topological $K$-theory; to review Kato's ramification theory for finite abelian extensions of the $n$-dimensional local field $K$, and to state the local abelian higher-dimensional $K$-theoretic generalization of local abelian class field theory of Hasse, which is developed by Kato and Parshin. The paper is geared toward non-abelian generalization of this theory.
References
- [1] A. Abbes and T. Saito, Ramification of local fields with imperfect residue fields, Amer.
J. Math. 124 (5), 879–920, 2002.
- [2] E. Artin and J. Tate, Class Field Theory, AMS Chelsea Publishing, Vol.366, American
Mathematical Society, Providence, Rhode Island, 2008.
- [3] C. Barwick and P. Heine, Pyknotic objects I. Basic notions, arXiv:1904.09966
[math.AG], 2019. Retrieved November 30, 2020, from the arXiv database.
- [4] S. Bloch, Algebraic K-theory and class field theory for arithmetic surfaces, Ann. Math.
114, 229–266, 1981.
- [5] O. Braunling, M. Groechenig and J. Wolfson, Geometric and analytic structures on
higher adèles, Res. Math. Sci. 3, Paper No. 22, 56 pages, 2016.
- [6] A. Cámara, Topology on rational points over n-local fields, Rev. R. Acad. Cienc.
Exactas Fís. Nat. Ser. A Math. RACSAM 110 (2), 417-432, 2016.
- [7] I.B. Fesenko, Class field theory of multi-dimensional local fields of characteristic zero,
with residue field of positive characteristic, Algebra i Analiz 3 (3), 165-196, 1991.
- [8] I.B. Fesenko, On class field theory of multi-dimensional local fields of positive characteristic,
Algebraic K-theory, Adv. Soviet Math., Vol. 4, Amer. Math. Soc., Providence,
RI, 1991, 103-127.
- [9] I.B. Fesenko, Multi-dimensional local class field theory, Dokl. Akad. Nauk SSSR 318 (1),
47-50, 1991.
- [10] I.B. Fesenko, Abelian local p-class field theory, Math. Anal. 301, 561-586, 1995.
- [11] I.B. Fesenko, Abelian extensions of complete discrete valuation fields, Number Theory:
Séminaire de Théorie des Nombres de Paris 1993-94 (Sinnou David ed.), Cambridge
Univ. Press, Cambridge, 47-74, 1996.
- [12] I.B. Fesenko, Topological Milnor K-groups of higher local fields, Invitation to Higher Local
Fields (Ed. I. B. Fesenko, M. Kurihara), Geometry & Topology Monographs 3,
Warwick, 61-74, 2000.
- [13] I.B. Fesenko, Explicit higher local class field theory, Invitation to Higher Local Fields (Ed.
I. B. Fesenko, M. Kurihara), Geometry & Topology Monographs 3, Warwick, 95-101,
2000.
- [14] I.B. Fesenko, Sequential topologies and quotients of the Milnor K-groups of higher local
fields, Algebra i Analiz 13 (3), 198–221, 2001.
- [15] I.B. Fesenko and S.V. Vostokov, Local Fields and Their Extensions (2nd ed.), AMS
Translations of Mathematical Monographs 121, AMS, Providence, Rhode Island,
2002.
- [16] H. Hasse, Die Normenresttheorie relative-Abelscher Zahlkörper als Klassenkörper im
Kleinen, J. Reine Angew. Math. (Crelle) 162, 145-154, 1930.
- [17] M. Hazewinkel, Local class field theory is easy, Advances in Math. 18 (2), 148-181,
1975.
- [18] A. Huber, On the Parshin-Be˘ılinson adèles for schemes, Abh. Math. Sem. Univ.
Hamburg 61, 249–273, 1991.
- [19] O. Hyodo, Wild ramification in the imperfect residue field case, Galois Groups and
Their Representations (Nagoya, 1981), Adv. Stud. Pure Math. 2, North-Holland,
Amsterdam, 287–314, 1983.
- [20] K.I. Ikeda and E. Serbest, Local non-abelian Kato-Parshin reciprocity law, in preparation.
- [21] K. Iwasawa, Local Class Field Theory, Oxford Mathematical Monographs, Oxford
Univ. Press., Clarendon, 1986.
- [22] K. Kato, A generalization of local class field theory by using K-groups I, II, III, J.
Fac. Sci. Univ. Tokyo Sect. IA Math. 26, 303-376, 1979; 27, 603-683, 1980; 29, 31-43,
1982.
- [23] K. Kato, Vanishing cycles, ramification of valuations, and class field theory, Duke
Math. J. 55 (3), 629-659, 1987.
- [24] K. Kato, Swan conductors for characters of degree one in the imperfect residue field
case, Algebraic K-theory and Algebraic Number Theory (Honolulu, HI, 1987), Contemp.
Math. 83, Amer. Math. Soc., Providence, RI, 101-131, 1989.
- [25] K. Kato, Existence theorem for higher local fields, Invitation to Higher Local Fields
(Ed. I. B. Fesenko, M. Kurihara), Geometry & Topology Monographs 3, Warwick,
165-195, 2000.
- [26] K. Kato and S. Saito, Two-dimensional class field theory, Galois Groups and Their
Representations (Nagoya, 1981), Adv. Stud. Pure Math. 2, North-Holland, Amsterdam,
103–152, 1983.
- [27] K. Kato and S. Saito, Global class field theory of arithmetic schemes, Applications of Algebraic
K-theory to Algebraic Geometry and Number Theory, Part I, II (Boulder, Colorado,
1983), Contemp. Math., 55, Amer. Math. Soc., Providence, RI, 255–331, 1986.
- [28] K. Kato and T. Saito Coincidence of two Swan conductors of abelian characters,
Épijournal Géom. Algébrique 3, Art. 15, 16 pp, 2019.
- [29] Y. Kawada and I. Satake, Class formations II, J. Fac. Sci. Univ. Tokyo 7, 453-490,
1955.
- [30] Y. Koya, A generalization of class formation by using hypercohomology, Invent. Math.
101, 705-715, 1990.
- [31] Y. Koya, A generalization of Tate-Nakayama theorem by using hypercohomology, Proc.
Japan Acad., Ser. A 69 (3), 53-57, 1993.
- [32] Y. Koya, Class field theory without theorem 90, Algebra Colloq. 1 (4), 347-358, 1994.
- [33] K. Kurano and K. Shimomoto, An elementary proof of the Cohen-Gabber theorem in
the equal characteristic p > 0 case, Tohoku Math. J. 70, 377-389, 2018.
- [34] S. Lichtenbaum, The construction of weight-two arithmetic cohomology, Invent. Math.
88, 183-215, 1987.
- [35] V.G. Lomadze, On the ramification theory of two-dimensional local fields, Math.
USSR Sbornik 37, 349–365, 1980.
- [36] A.I. Madunts and I.B. Zhukov, Multi-dimensional complete fields : Topology and
other basic constructions, Trudy S.-Peterb. Mat. Obshch. 1995, English translation
in Amer. Math. Soc. Transl. (Ser. 2)165, 1-34, 1995.
- [37] M. Morrow, An introduction to higher dimensional local fields and adèles,
arXiv:1204.0586v2 [math.AG], 2012. Retrieved October 25, 2020, from the arXiv
database.
- [38] M. Morrow, Continuity of the norm map on Milnor K-theory, J. K-Theory 9 (3), 565–
577, 2012.
- [39] J. Neukirch, Neubegründung der Klassenkörpertheorie, Math. Z. 186, 557–574, 1984.
- [40] J. Neukirch, Class Field Theory, Springer-Verlag, Berlin, 1986.
- [41] D.V. Osipov, n-dimensional local fields and adèles on n-dimensional schemes, Surveys
in Contemporary Mathematics, London Math. Soc. Lecture Note Ser., 347,
Cambridge Univ. Press, Cambridge, 131–164, 2008.
- [42] A.N. Parshin, Class fields and algebraic K-theory, Uspekhi Mat. Nauk 30 (1), 253–
254, 1975.
- [43] A.N. Parshin, On the arithmetic of two-dimensional schemes. I. Distributions and residues,
Izv. Akad. Nauk SSSR Ser. Mat. 40 (4), 736–773, 1976.
- [44] A.N. Parshin, Abelian coverings of arithmetic schemes, Sov. Math., Dokl. 19, 1438-1442,
1978.
- [45] A.N. Parshin, Local class field theory, Trudy Mat. Inst. Steklov 165, 143-170, 1985.
- [46] P. Scholze, Lectures on Condensed Mathematics–Joint work with D. Clausen, Bonn
Lectures, 2019.
- [47] M. Spiess, Class formations and higher dimensional local class field theory, Journal
of Number Theory 62, 273–283, 1997.
- [48] J. Tate, The higher dimensional cohomology groups of class field theory, Ann. of Math.
(2nd Series) 56, 294-297, 1952.
- [49] L. Xiao and I. B. Zhukov, Ramification of higher local fields, approaches and questions,
Algebra i Analiz 26 (5), 1-63, 2014.
- [50] I.B. Zhukov, Higher dimensional local fields, Invitation to Higher Local Fields (Münster,
1999) (Ed. I. B. Fesenko, M. Kurihara), Geom. Topol. Monogr. 3, Geom. Topol.
Publ., Coventry, 5-18, 2000.
- [51] I.B. Zhukov, An approach to higher ramification theory, Invitation to Higher Local Fields
(Münster, 1999) (Ed. I. B. Fesenko, M. Kurihara), Geom. Topol. Monogr., 3, Geom.
Topol. Publ., Coventry, 143-150, 2000.