Research Article
BibTex RIS Cite
Year 2021, Volume: 50 Issue: 6, 1620 - 1635, 14.12.2021
https://doi.org/10.15672/hujms.795924

Abstract

References

  • [1] T. Alieva, V. Lopez, F. Agullo-Lopez and L.B. Almeida, The fractional Fourier trans- form in optical propagation problems, J. Modern Opt. 41 (5), 1037–1044, 1994.
  • [2] L.B. Almeida, The fractional Fourier transform and time-frequency representations, IEEE Trans. Signal Process. 42 (11), 3084–3091, 1994.
  • [3] L.B. Almeida, Product and convolution theorems for the fractional Fourier transform, IEEE Signal Process. Lett. 4 (1), 15–17, 1997.
  • [4] A. Bultheel and H. Martinez, A shattered survey of the fractional Fourier transform, K.U.Leuven: Department of Computer Science, Report TW337, 2002.
  • [5] P. Dimovski , S. Pilipovic, B. Prangoski and J. Vindas, Translation-modulation in- variant Banach spaces of ultradistributions, J. Fourier Anal. Appl. 25 (3), 819–841, 2019.
  • [6] R.G. Dorsch, A.W. Lohmann, Y. Bitran, D. Mendlovic and H.M. Ozaktas, Chirp filtering in the fractional Fourier domain, Appl. Optics, 33 (32), 7599–7602, 1994.
  • [7] H.G. Feichtinger, A compactness criterion for translation invariant Banach spaces of functions, Anal. Math. 8, 165–172, 1982.
  • [8] H.G. Feichtinger, Compactness in translation invariant Banach spaces of distributions and compact multipliers, J. Math. Anal. Appl. 102, 289–327, 1984.
  • [9] H.G. Feichtinger and A.T. Gürkanlı, On a family of weighted convolution algebras, Int. J. Math. Sci. 13 (3), 517–526, 1990.
  • [10] R.H. Fischer, A.T. Gürkanlı and T.S. Liu, On a family of weighted spaces, Math. Slovaca, 46 (1), 71–82, 1996.
  • [11] K. Gröchenig, Weight functions in time-frequency analysis, in: Pseudodifferential Operators: Partial Differential Equations and Time-Frequency Analysis, Fields Inst. Commun. 52, 343–366, Amer. Math. Soc., Providence, RI, 2007.
  • [12] A.T. Gürkanlı, Compact embeddings of spaces $A_{w,\omega }^{p}\left(\mathbb{R}^{d}\right) $, Taiwanese J. Math. 12 (7), 1757–1767, 2008.
  • [13] A.C. McBride and F.H. Kerr, On Namias’s fractional Fourier transforms, IMA J. Appl. Math. 39, 159–175, 1987.
  • [14] V. Namias, The fractional order of Fourier transform and its application in quantum mechanics, J. Inst. Math. Appl. 25, 241–265, 1980.
  • [15] H.M. Ozaktas, M.A. Kutay and Z. Zalevsky, The Fractional Fourier Transform with Applications in Optics and Signal Processing, Chichester, John Wiley and Sons, 2001.
  • [16] H. Reiter, Classical Harmonic Analysis and Locally Compact Group, Oxford Univer- sity Press, 1968.
  • [17] W. Rudin, Real and Complex Analysis, New York, McGraw-Hill, 1966.
  • [18] W. Rudin, Functional Analysis, McGraw-Hill, 1973.
  • [19] E. Toksoy and A. Sandıkçı, On function spaces with fractional Fourier transform in weighted Lebesgue spaces, J. Inequal. Appl. 2015 (1), Article Id:87, 1–10, 2015.
  • [20] N. Wiener, Hermitian polynomials and Fourier analysis, J. Math. Phys. 8, 70–73, 1929.
  • [21] A.I. Zayed, On the relationship between the Fourier and fractional Fourier transforms, IEEE Signal Proc. Let. 3, 310–311, 1996.

Some compact and non-compact embedding theorems for the function spaces defined by fractional Fourier transform

Year 2021, Volume: 50 Issue: 6, 1620 - 1635, 14.12.2021
https://doi.org/10.15672/hujms.795924

Abstract

The fractional Fourier transform is a generalization of the classical Fourier transform through an angular parameter $\alpha $. This transform uses in quantum optics and quantum wave field reconstruction, also its application provides solving some differrential equations which arise in quantum mechanics. The aim of this work is to discuss compact and non-compact embeddings between the spaces $A_{\alpha ,p}^{w,\omega }\left(\mathbb{R}^{d}\right) $ which are the set of functions in ${L_{w}^{1}\left(\mathbb{R}^{d}\right) }$ whose fractional Fourier transform are in ${L_{\omega}^{p}\left(\mathbb{R}^{d}\right) }$. Moreover, some relevant counterexamples are indicated.

References

  • [1] T. Alieva, V. Lopez, F. Agullo-Lopez and L.B. Almeida, The fractional Fourier trans- form in optical propagation problems, J. Modern Opt. 41 (5), 1037–1044, 1994.
  • [2] L.B. Almeida, The fractional Fourier transform and time-frequency representations, IEEE Trans. Signal Process. 42 (11), 3084–3091, 1994.
  • [3] L.B. Almeida, Product and convolution theorems for the fractional Fourier transform, IEEE Signal Process. Lett. 4 (1), 15–17, 1997.
  • [4] A. Bultheel and H. Martinez, A shattered survey of the fractional Fourier transform, K.U.Leuven: Department of Computer Science, Report TW337, 2002.
  • [5] P. Dimovski , S. Pilipovic, B. Prangoski and J. Vindas, Translation-modulation in- variant Banach spaces of ultradistributions, J. Fourier Anal. Appl. 25 (3), 819–841, 2019.
  • [6] R.G. Dorsch, A.W. Lohmann, Y. Bitran, D. Mendlovic and H.M. Ozaktas, Chirp filtering in the fractional Fourier domain, Appl. Optics, 33 (32), 7599–7602, 1994.
  • [7] H.G. Feichtinger, A compactness criterion for translation invariant Banach spaces of functions, Anal. Math. 8, 165–172, 1982.
  • [8] H.G. Feichtinger, Compactness in translation invariant Banach spaces of distributions and compact multipliers, J. Math. Anal. Appl. 102, 289–327, 1984.
  • [9] H.G. Feichtinger and A.T. Gürkanlı, On a family of weighted convolution algebras, Int. J. Math. Sci. 13 (3), 517–526, 1990.
  • [10] R.H. Fischer, A.T. Gürkanlı and T.S. Liu, On a family of weighted spaces, Math. Slovaca, 46 (1), 71–82, 1996.
  • [11] K. Gröchenig, Weight functions in time-frequency analysis, in: Pseudodifferential Operators: Partial Differential Equations and Time-Frequency Analysis, Fields Inst. Commun. 52, 343–366, Amer. Math. Soc., Providence, RI, 2007.
  • [12] A.T. Gürkanlı, Compact embeddings of spaces $A_{w,\omega }^{p}\left(\mathbb{R}^{d}\right) $, Taiwanese J. Math. 12 (7), 1757–1767, 2008.
  • [13] A.C. McBride and F.H. Kerr, On Namias’s fractional Fourier transforms, IMA J. Appl. Math. 39, 159–175, 1987.
  • [14] V. Namias, The fractional order of Fourier transform and its application in quantum mechanics, J. Inst. Math. Appl. 25, 241–265, 1980.
  • [15] H.M. Ozaktas, M.A. Kutay and Z. Zalevsky, The Fractional Fourier Transform with Applications in Optics and Signal Processing, Chichester, John Wiley and Sons, 2001.
  • [16] H. Reiter, Classical Harmonic Analysis and Locally Compact Group, Oxford Univer- sity Press, 1968.
  • [17] W. Rudin, Real and Complex Analysis, New York, McGraw-Hill, 1966.
  • [18] W. Rudin, Functional Analysis, McGraw-Hill, 1973.
  • [19] E. Toksoy and A. Sandıkçı, On function spaces with fractional Fourier transform in weighted Lebesgue spaces, J. Inequal. Appl. 2015 (1), Article Id:87, 1–10, 2015.
  • [20] N. Wiener, Hermitian polynomials and Fourier analysis, J. Math. Phys. 8, 70–73, 1929.
  • [21] A.I. Zayed, On the relationship between the Fourier and fractional Fourier transforms, IEEE Signal Proc. Let. 3, 310–311, 1996.
There are 21 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Erdem Toksoy 0000-0003-3597-6161

Ayşe Sandıkçı 0000-0001-5800-5558

Publication Date December 14, 2021
Published in Issue Year 2021 Volume: 50 Issue: 6

Cite

APA Toksoy, E., & Sandıkçı, A. (2021). Some compact and non-compact embedding theorems for the function spaces defined by fractional Fourier transform. Hacettepe Journal of Mathematics and Statistics, 50(6), 1620-1635. https://doi.org/10.15672/hujms.795924
AMA Toksoy E, Sandıkçı A. Some compact and non-compact embedding theorems for the function spaces defined by fractional Fourier transform. Hacettepe Journal of Mathematics and Statistics. December 2021;50(6):1620-1635. doi:10.15672/hujms.795924
Chicago Toksoy, Erdem, and Ayşe Sandıkçı. “Some Compact and Non-Compact Embedding Theorems for the Function Spaces Defined by Fractional Fourier Transform”. Hacettepe Journal of Mathematics and Statistics 50, no. 6 (December 2021): 1620-35. https://doi.org/10.15672/hujms.795924.
EndNote Toksoy E, Sandıkçı A (December 1, 2021) Some compact and non-compact embedding theorems for the function spaces defined by fractional Fourier transform. Hacettepe Journal of Mathematics and Statistics 50 6 1620–1635.
IEEE E. Toksoy and A. Sandıkçı, “Some compact and non-compact embedding theorems for the function spaces defined by fractional Fourier transform”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 6, pp. 1620–1635, 2021, doi: 10.15672/hujms.795924.
ISNAD Toksoy, Erdem - Sandıkçı, Ayşe. “Some Compact and Non-Compact Embedding Theorems for the Function Spaces Defined by Fractional Fourier Transform”. Hacettepe Journal of Mathematics and Statistics 50/6 (December 2021), 1620-1635. https://doi.org/10.15672/hujms.795924.
JAMA Toksoy E, Sandıkçı A. Some compact and non-compact embedding theorems for the function spaces defined by fractional Fourier transform. Hacettepe Journal of Mathematics and Statistics. 2021;50:1620–1635.
MLA Toksoy, Erdem and Ayşe Sandıkçı. “Some Compact and Non-Compact Embedding Theorems for the Function Spaces Defined by Fractional Fourier Transform”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 6, 2021, pp. 1620-35, doi:10.15672/hujms.795924.
Vancouver Toksoy E, Sandıkçı A. Some compact and non-compact embedding theorems for the function spaces defined by fractional Fourier transform. Hacettepe Journal of Mathematics and Statistics. 2021;50(6):1620-35.