Research Article
BibTex RIS Cite
Year 2022, Volume: 51 Issue: 1, 83 - 94, 14.02.2022
https://doi.org/10.15672/hujms.761213

Abstract

References

  • [1] K. Bouallegue, O. Echi and R. Pinch, Korselt Numbers and Sets, Int. J. Number Theory 6, 257-269, 2010.
  • [2] O. Echi and N. Ghanmi, The Korselt Set of pq, Int. J. Number Theory, 8 (2), 299-309, 2012.
  • [3] N. Ghanmi, $\mathbb{Q}$-Korselt Numbers, Turkish J. Math. 42, 2752-2762, 2018.
  • [4] N. Ghanmi, Korselt Rationel Bases of Prime Powers, Studia Sci. Math. Hungar. 56 (4), 388-403, 2019.
  • [5] N. Ghanmi, The $\mathbb{Q}$-Korselt Set of pq, Period. Math. Hungar. 81 (2), 174-193, 2020.
  • [6] N. Ghanmi and I. Al-Rassasi, On Williams Numbers With Three Prime Factors, Miss. J. Math. Sc. 25 (2), 134-152, 2013.
  • [7] N. Ghanmi, O. Echi and I. Al-Rassasi, The Korselt Set of a Squarefree Composite Number, Math. Rep. Cand. Aca. Sc. 35 (1), 1-15, 2013.
  • [8] A. Korselt, Problème chinois, L’intermediaire des Mathématiciens 6, 142–143, 1899.

Numbers with empty rational Korselt sets

Year 2022, Volume: 51 Issue: 1, 83 - 94, 14.02.2022
https://doi.org/10.15672/hujms.761213

Abstract

Let $N$ be a positive integer, and $\alpha=\dfrac{\alpha_{1}}{\alpha_{2}}\in \mathbb{Q}\setminus \{0,N\}$ with $\gcd(\alpha_{1}, \alpha_{2})=1$. $N$ is called an $\alpha$-Korselt number, equivalently $\alpha$ is said an $N$-Korselt base, if $\alpha_{2}p-\alpha_{1}$ divides $\alpha_{2}N-\alpha_{1}$ for every prime divisor $p$ of $N$. The set of $N$-Korselt bases in $\mathbb{Q}$ is denoted by $\mathbb{Q}$-$\mathcal{KS}(N)$ and called the set of rational Korselt bases of $N$.

In this paper rational Korselt bases are deeply studied, where we give in details their belonging sets and their forms in some cases. This allows us to deduce that for each integer $n\geq 3$, there exist infinitely many squarefree composite numbers $N$ with $n$ prime factors and empty rational Korselt sets.

References

  • [1] K. Bouallegue, O. Echi and R. Pinch, Korselt Numbers and Sets, Int. J. Number Theory 6, 257-269, 2010.
  • [2] O. Echi and N. Ghanmi, The Korselt Set of pq, Int. J. Number Theory, 8 (2), 299-309, 2012.
  • [3] N. Ghanmi, $\mathbb{Q}$-Korselt Numbers, Turkish J. Math. 42, 2752-2762, 2018.
  • [4] N. Ghanmi, Korselt Rationel Bases of Prime Powers, Studia Sci. Math. Hungar. 56 (4), 388-403, 2019.
  • [5] N. Ghanmi, The $\mathbb{Q}$-Korselt Set of pq, Period. Math. Hungar. 81 (2), 174-193, 2020.
  • [6] N. Ghanmi and I. Al-Rassasi, On Williams Numbers With Three Prime Factors, Miss. J. Math. Sc. 25 (2), 134-152, 2013.
  • [7] N. Ghanmi, O. Echi and I. Al-Rassasi, The Korselt Set of a Squarefree Composite Number, Math. Rep. Cand. Aca. Sc. 35 (1), 1-15, 2013.
  • [8] A. Korselt, Problème chinois, L’intermediaire des Mathématiciens 6, 142–143, 1899.
There are 8 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Nejib Ghanmi 0000-0002-5390-2679

Publication Date February 14, 2022
Published in Issue Year 2022 Volume: 51 Issue: 1

Cite

APA Ghanmi, N. (2022). Numbers with empty rational Korselt sets. Hacettepe Journal of Mathematics and Statistics, 51(1), 83-94. https://doi.org/10.15672/hujms.761213
AMA Ghanmi N. Numbers with empty rational Korselt sets. Hacettepe Journal of Mathematics and Statistics. February 2022;51(1):83-94. doi:10.15672/hujms.761213
Chicago Ghanmi, Nejib. “Numbers With Empty Rational Korselt Sets”. Hacettepe Journal of Mathematics and Statistics 51, no. 1 (February 2022): 83-94. https://doi.org/10.15672/hujms.761213.
EndNote Ghanmi N (February 1, 2022) Numbers with empty rational Korselt sets. Hacettepe Journal of Mathematics and Statistics 51 1 83–94.
IEEE N. Ghanmi, “Numbers with empty rational Korselt sets”, Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 1, pp. 83–94, 2022, doi: 10.15672/hujms.761213.
ISNAD Ghanmi, Nejib. “Numbers With Empty Rational Korselt Sets”. Hacettepe Journal of Mathematics and Statistics 51/1 (February 2022), 83-94. https://doi.org/10.15672/hujms.761213.
JAMA Ghanmi N. Numbers with empty rational Korselt sets. Hacettepe Journal of Mathematics and Statistics. 2022;51:83–94.
MLA Ghanmi, Nejib. “Numbers With Empty Rational Korselt Sets”. Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 1, 2022, pp. 83-94, doi:10.15672/hujms.761213.
Vancouver Ghanmi N. Numbers with empty rational Korselt sets. Hacettepe Journal of Mathematics and Statistics. 2022;51(1):83-94.