Generic $\xi^{\perp}$-Riemannian Submersions
Year 2022,
Volume: 51 Issue: 2, 390 - 403, 01.04.2022
Ramazan Sarı
Abstract
As a generalization of semi-invariant $\xi ^{\perp }$-Riemannian submersions, we introduce the generic $\xi ^{\perp }$- Riemannian submersions. We focus on the generic $\xi ^{\perp }$-Riemannian submersions for the Sasakian manifolds with examples and investigate the geometry of foliations. Also, necessary and sufficient conditions for the base manifold to be a local product manifold are obtained and new conditions for totally geodesicity are established. Furthermore, curvature properties of distributions for a generic $\xi ^{\perp }$-Riemannian submersion from Sasakian space forms are obtained and we prove that if the distributions, which define a generic $\xi ^{\perp }$-Riemannian submersion are totally geodesic, then they are Einstein.
Supporting Institution
Amasya University
Project Number
FMB-BAP18-0335
Thanks
Thank you to Amasya University for their support
References
-
[1] M.A. Akyol, Generic Riemannian submersions from almost product Riemannian
manifolds, Gazi Univ. J. Sci. 30 (3), 89-100, 2017.
-
[2] M.A. Akyol, Conformal Semi-Invariant Submersions from Almost Product Riemann-
ian Manifolds, Acta Math. Vietnam. 42, 491-507, 2017.
-
[3] M.A. Akyol, Conformal generic submersions, Turkish J. Math. 45, 201-219, 2021.
-
[4] M.A. Akyol and Y. Gündüzalp, Semi inavariant semi-Riemannian submersion, Com-
mun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 67 (1), 80-92, 2018.
-
[5] M.A. Akyol, R. Sarı and E. Aksoy, Semi-invariant $\xi ^{\perp
}$−Riemannian submersions from
almost contact metric manifolds, Int. J. Geom. Methods Mod. Phys. 14 (5), 1750074,
2017.
-
[6] M.A. Akyol and B. Şahin, Conformal semi-invariant submersions, Commun. Con-
temp. Math. 19 (2), 1650011, 2017.
-
[7] S. Ali and T. Fatima, Generic Riemannian submersions, Tamkang J. Math. 44 (4),
395-409, 2013.
-
[8] S. Ali and T. Fatima, Anti-invariant Riemannian submersions from nearly Kaehler
manifolds, Filomat, 27 (7), 1219-1235, 2013.
-
[9] P. Baird and J.C. Wood, Harmonic morphisms between Riemannian manifolds, Lon-
don Mathematical Society Monographs 29, Oxford University Press, The Clarendon
Press. Oxford, 2003.
-
[10] D.E. Blair, Contact manifold in Riemannain geometry, Lect. Notes Math. 509,
Springer-Verlag, Berlin-New York, 1976.
-
[11] J.P. Bourguignon and H.B. Lawson, Stability and isolation phenomena for Yang-mills
fields, Commun. Math. Phys. 79, 189-230, 1981.
-
[12] J.P. Bourguignon and H.B. Lawson, A mathematician’s visit to Kaluza-Klein theory,
Rend. Sem. Mat. Univ. Politec. Torino, Special Issue, 143-163, 1989.
-
[13] C. Dunn, P. Gilkey and J. H. Park, The spectral geometry of the canonical Riemannian
submersion of a compact Lie group, J. Geom. Phys. 57 (10), 2065-2076, 2007.
-
[14] M. Falcitelli, S. Ianus and A.M. Pastore, Riemannian submersions and related Topics,
World Scientific, River Edge, NJ, 2004.
-
[15] T. Fatima and S. Ali, Submersions of generic submanifolds of a Kaehler manifold,
Arab J. Math. Sci. 20 (1), 119-131, 2014.
-
[16] P. Frejlich, Submersions by Lie algebroids, J. Geom. Phys. 137, 237-246, 2019.
-
[17] A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math.
Mech. 16, 715-737, 1967.
-
[18] Y. Gündüzalp, Anti-invariant semi-Riemannian submersions from almost para-
Hermitian manifolds, J. Funct. Spaces, 720623, 2013.
-
[19] S. Ianus and M. Visinescu, Kaluza-Klein theory with scalar fields and generalized Hopf
manifolds, Class. Quantum Gravity, 4, 1317-1325, 1987.
-
[20] S. Ianus and M. Visinescu, Space-time compaction and Riemannian submersions, The
Mathematical Heritage of C. F. Gauss, 358-371, River Edge, World Scientific, 1991.
-
[21] J.W. Lee, Anti-invariant $\xi ^{\perp
}$−Riemannian submersions from almost contact mani-
folds, Hacettepe J. Math. Stat. 42 (3), 231-241, 2013.
-
[22] M.T. Mustafa, Applications of harmonic morphisms to gravity, J. Math. Phys. 41,
6918-6929, 2000.
-
[23] B. O’Neill, The fundamental equations of a submersion, Mich. Math. J. 13, 458-469,
1966.
-
[24] F. Özdemir, C. Sayar and H.M. Taştan, Semi-invariant submersions whose total man-
ifolds are locally product Riemannian, Quaest. Math. 40 (7), 909-926, 2017.
-
[25] K.S. Park, H-semi-invariant submersions, Taiwan. J. Math. 16 (5), 1865-1878, 2012.
-
[26] R. Prasad and S. Kumar, Conformal semi-invariant submersion from almost contact
manifolds onto Riemannian manifolds, Khayyam J. Math. 5 (2), 77-95, 2019.
-
[27] S. Sasaki and Y. Hatakeyama, On differentiable manifolds with contact metric struc-
ture, J. Math. Soc. Jpn. 14, 249-271, 1961.
-
[28] C. Sayar, H.M. Tastan, F. Özdemir and M.M. Tripathi, Generic submersion from
Kaehler manifold, Bull. Malays. Math. Sci. Soc. 43, 809-831, 2020.
-
[29] B. Şahin, Anti-invariant Riemannian submersions from almost Hermitian manifolds,
Cent. Eur. J. Math. 3, 437-447, 2010.
-
[30] B. Şahin, Semi-invariant Riemannian submersions from almost Hermitian manifolds,
Canad. Math. Bull. 56, 173-183, 2011.
-
[31] B. Şahin, Generic Riemannian Maps, Miskolc Math. Notes, 18 (1), 453-467, 2017.
-
[32] B. Watson, G, G’-Riemannian submersions and nonlinear gauge field equations of
general relativity, Global Analysis - Analysis on manifolds, Teubner-Texte Math.
Teubner, Leipzig, 57, 324-349, 1983.