Research Article
BibTex RIS Cite

Estimation of entropies on time scales by Lidstone's interpolation using Csiszár-type functional

Year 2022, Volume: 51 Issue: 3, 817 - 833, 01.06.2022
https://doi.org/10.15672/hujms.971154

Abstract

The inequality containing Csiszár divergence on time scales is generalized for 2n2n-convex functions by using Lidstone interpolating polnomial. As an application, new entropic bounds on time scales are also computed. Several inequalities in quantum calculus and hh-discrete calculus are also established. The relationship between Shannon entropy, Kullback-Leibler divergence and Jeffreys distance with Zipf-Mandelbrot entropy are also established.

Supporting Institution

The research of 5th author (Josip Pecaric) is supported by the Ministry of Education and Science of the Russian Federation

Project Number

Agreement number 02.a03.21.0008).

Thanks

The authors would like to express their sincere thanks to the anonymous reviewers for their helpful comments and suggestions.

References

  • [1] R.P. Agarwal and P.J.Y. Wong, Error Inequalities in Polynomial Interpolation and Their Applications, Kluwer Academic Publishers, 1983.
  • [2] R. Agarwal, M. Bohner and A. Peterson, Inequalities on time scales: A survey, Math. Inequal. Appl. 7, 535-557, 2001.
  • [3] G. Aras Gazić, V. Culjak, J. Pečarić and A. Vukelić, Generalization of Jensen’s inequality by Lidstone’s polynomial and related results, Math. Inequal. Appl. 164, 1243-1267, 2013.
  • [4] R. Agarwal, D. O’Regan, and S. Saker, Dynamic inequalities on time scales, Springer, London, 2014.
  • [5] M. Adil Khan, N. Latif and J. Pečarić, Generalization of majorization theorem via Abel-Gontscharoff polynomial, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 19 (523), 91-116, 2015.
  • [6] R.P. Agarwal, S.I. Bradanovic and J., Pečarić, Generalizations of Sherman’s inequality by Lidstone’s interpolating polynomial, J. Inequal. Appl. 2016 (1), 1-18, 2016.
  • [7] M. Adil Khan, N. Latif and J. Pečarić, Generalizations of Majorization Inequality via Lidstone’s Polynomial and Their Applications, Commun. Math. Anal. 19 (2), 101-122, 2016.
  • [8] P. Agarwal, S.S. Dragomir, M. Jleli and B. Samet, Advances in Mathematical In- equalities and Applications, Springer Singapore, 2018.
  • [9] D. Andrica and T.M. Rassias, Differential and Integral Inequalities, Springer, 2019.
  • [10] M. Adeel, K.A. Khan, Ð. Pečarić and J. Pečarić, Generalization of the Levinson inequality with applications to information theory, J. Inequal. Appl. 2019, 230, 2019.
  • [11] M. Adeel, K.A. Khan, Ð. Pečarić and J. Pečarić, Estimation of f-divergence and Shannon entropy by Levinson type inequalities via new Green’s functions and Lidstone polynomial, Adv. Differ. Equ. 2020 (1), 1-15, 2020.
  • [12] M. Adeel, K.A. Khan, Ð. Pečarić and J. Pečarić, Estimation of f-divergence and Shannon entropy by Levinson type inequalities for higher order convex functions via Taylor polynomial, J. Math. Comput. Sci. 21 (4), 322-334, 2020.
  • [13] M.U. Awan, S. Talib, A. Kashuri, M.A. Noor and Y.M. Chu, Estimates of quantum bounds pertaining to new q-integral identity with applications, Adv. Differ. Equ. 2020 (1), 1-15, 2020.
  • [14] I. Ansari, K.A. Khan, A. Nosheen, Ð. Pečarić and J. Pečarić, Shannon type inequalities via time scales theory, Adv. Differ. Equ. 2020, 135, 2020.
  • [15] I. Ansari, K.A. Khan, A. Nosheen, Ð. Pečarić and J. Pečarić, Some inequalities for Csiszár divergence via theory of time scales, Adv. Differ. Equ. 2020, 698, 2020.
  • [16] I. Ansari, K.A. Khan, A. Nosheen, Ð. Pečarić and J. Pečarić, Estimation of divergence measures via weighted Jensen inequality on time scales, J. Inequal. Appl. 2021, 93, 2021.
  • [17] M.A. Ali, S.K. Ntouyas and J. Tariboon, Generalization of Quantum Ostrowski-Type Integral Inequalities, Mathematics. 9 (10), 11-55, 2021.
  • [18] D. Brigo and F. Mercurio, Discrete time vs continuous time stock-price dynamics and implications for option pricing Finance Stochast. 4, 147-159, 2000.
  • [19] M. Bohner and A. Peterson, Dynamic Equations on Time Scales, Birkh¨auser, Boston, 2001.
  • [20] M. Bohner, and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkh¨auser, Boston, 2003.
  • [21] K. Brahim, N. Bettaibi and M. Sellemi, On some Feng Qi type q-integral inequalities, J. Inequal. Pure Appl. Math. 9 (2), 1-7, 2008.
  • [22] R. Bibi, M. Bohner, J. Pečarić and S. Varosanec, Minkowski and Beckenbach-Dresher inequalities and functionals on time scales, J. Math. Inequal. 7 (3), 299-312, 2013.
  • [23] S.I. Butt and J. Pečarić, Generalization of Popoviciu Type Inequalities Via Abel- Gontscharoff Interpolating Polynomial, Orissa Math. Soc. 34 (1), 63-83, 2015.
  • [24] S.I. Butt, K.A. Khan and J. Pečarić, Generalization of Popoviciu inequality for higher order convex function via Taylor’s polynomial, Acta Univ. Apulensis. 42, 181-200, 2015.
  • [25] R. Bibi, A. Nosheen and J. Pečarić, Generalization of Jensen-type linear functional on time scales via lidstone polynomial, Cogent. Math. 4 (1), 1330670, 2017.
  • [26] S.I. Butt, N. Mehmood and J. Pečarić, New generalizations of Popoviciu type inequalities via new green functions and Fink’s identity, Trans. A. Razmadze Math. Inst. 171 (3), 293-303, 2017.
  • [27] R. Bibi, A. Nosheen and J. Pečarić, Extended Jensen’s type inequalities for diamond integrals via Taylors formula, Turkish J. Inequal. 3 (1), 7-18, 2019.
  • [28] S.I. Butt, N. Mehmood, Ð. Pečarić and J. Pečarić, New bounds for Shannon, relative and Mandelbrot entropies via Abel-Gontscharoff interpolating polynomial, Math. Inequal. Appl, 22 (4), 1283-1301, 2019.
  • [29] A. Ben Makhlouf, M. Kharrat, M.A. Hammami and D. Baleanu, Henry-Gronwall type q-fractional integral inequalities, Math. Method. Appl. Sci. 44 (2), 3-9, 2021.
  • [30] F. Chen and W. Yang, Some new Chebyshev type quantum integral inequalities on finite intervals J. Comput. Anal. Appl. 21, 17-26, 2016.
  • [31] S.S. Dragomir, Other Inequalities for Csiszár Divergence and Applications, Preprint, RGMIA Res. Rep. Coll, 2000.
  • [32] L. Egghe and R. Rousseau, Introduction to Informetrics. Quantitative Methods in Library, Documentation and Information Science, Elsevier, New York, 1990.
  • [33] S. Erden, S. Iftikhar, M.R. Delavar, P. Kumam, P. Thounthong and W. Kumam, On generalizations of some inequalities for convex functions via quantum integrals, Rev. R. Acad. Cienc. Exactas Fis. Nat., Ser. A Mat. 114 (3), Article ID 110, 2020.
  • [34] A. Fahad, J. Pečarić and M.I. Qureshi, Generalized Steffensen’s inequality by Lidstone interpolation and Montogomery’s identity, J. Inequal. Appl. 2018 (1), 1-21, 2018.
  • [35] A. Fahad and J. Pečarić, Generalized Steffensen-type inequalities by Abel-Gontscharoff polynomial J. Math. Anal. 10 (4), 11-25, 2019.
  • [36] S. Furuichi and H.R. Moradi, Advances in Mathematical Inequalities, De Gruyter, 2020.
  • [37] H. Gauchman, Integral inequalities in q-calculus, Comput. Math. Appl. 47 (2-3), 281-300, 2004.
  • [38] H. Jackson, On q-definite integrals, Quart. J. Pure and Appl. Math. 41, 193-203, 1910.
  • [39] S. Kullback, Information theory and statistics, Peter Smith, Gloucester, MA, 1978.
  • [40] V. Kac and P. Cheung, Quantum Calculus, Springer, 2002.
  • [41] K.A. Khan, T. Niaz, Ð. Pečarić and J. Pečarić, Refinement of Jensen’s inequality and estimation of f-and Rényi divergence via Montgomery identity, J. Inequal. Appl. 2018 (1), 1-22, 2018.
  • [42] M.A. Khan, N. Mohammad, E.R. Nwaeze and Y.M. Chu, Quantum Hermite- Hadamard inequality by means of a Green function, Adv. Differ. Equ. 2020 (1), 1-20, 2020.
  • [43] M. Kunt, A., Kashuri, T. Du and A.W. Baidar, Quantum Montgomery identity and quantum estimates of Ostrowski type inequalities, AIMS Math. 5 (6), 39-57, 2020.
  • [44] Z. Liu and W. Yang, Some new Gr¨uss type quantum integral inequalities on finite intervals, J. Nonlin. Sci. Appl. 9, 62-75, 2016.
  • [45] N. Latif, N. Siddique and J. Pečarić, Generalization of majorization theorem-II. J. Math. Inequal. 12 (3), 731-752, 2018.
  • [46] Y.X. Li, M.A. Ali, H. Budak, M. Abbas and Y.M. Chu, A new generalization of some quantum integral inequalities for quantum differentiable convex functions, Adv. Differ. Equ. 2021 (1), 1-15, 2021.
  • [47] B. Manaris, D. Vaughan, C. S. Wagner, J. Romero, and R. B. Davis, Evolutionary music and the Zipf-Mandelbrot law: developing fitness functions for pleasant music. In: Proceedings of 1st European Workshop on Evolutionary Music and Art (Evo- MUSART2003), Essex. pp. 522-534, 2003.
  • [48] Y. Miao and F. Qi, Several q-integral inequalities, J. Math. Inequal. 3 (1), 115-121, 2009.
  • [49] D. Mouillot and A. Lepretre, Introduction of relative abundance distribution (RAD) indices, estimated from the rank-frequency diagrams (RFD), to assess changes in community diversity. Environ. Monit. Assess. 63 (2), 279-295, 2000.
  • [50] N. Mehmood, S.I. Butt, Ð. Pečarić and J., Pečarić, Generalizations of cyclic refinements of Jensen’s inequality by Lidstone’s polynomial with applications in information theory, J. Math. Inequal. 14 (1), 249-271, 2020.
  • [51] M.A. Noor, M.U. Awan and K.I. Noor, Quantum Ostrowski inequalities for q- differentiable convex functions, J. Math. Inequal, 10 (4), 1013-1018, 2016.
  • [52] A. Nosheen, R. Bibi and J. Pečarić, Jensen-Steffensen inequality for diamond integrals, its converse and improvements via Green function and Taylor’s formula, Aequationes Math. 92 (2), 289-309, 2018.
  • [53] T. Niaz, K.A. Khan, Ð. Pečarić and J. Pečarić, Estimation of different entropies via Taylor one point and Taylor two points interpolations using Jensen type functionals, Int. J. Anal. Appl. 17 (5), 686-710, 2019.
  • [54] J. Pečarić, F. Proschan and Y.L. Tong, Convex Functions, Partial Orderings, and Statistical Applications. Mathematics in Science and Engineering, Academic Press, New York, 1992.
  • [55] J. Pečarić, M. Praljak and A. Witkowski, Linear operator inequality for n-convex functions at a point, Math. Inequal. Appl. 18, 1201-1217, 2015.
  • [56] J. Pečarić, A. Perušić and K. Smoljak, Generalizations of Steffensen’s Inequality by Abel-Gontscharoff Polynomial, Khayyam J. Math. 1 (1), 45-61, 2015.
  • [57] J. Pečarić and M. Praljak, Popoviciu type inequalities for higher order convex functions via lidstone interpolation, Math. Inequal. Appl. 22 (4), 1243-1256, 2019.
  • [58] J. Pečarić, A. Perušić Pribanić and A. Vukelić, Generalizations of Steffensen’s inequality by Lidstone’s polynomial and related results, Quaestiones Mathematicae, 43 (3), 293-307, 2020.
  • [59] S. Ramzan, A. Nosheen, R. Bibi and J. Pečarić, Generalized Jensen’s functional on time scales via extended Montgomery identity, J. Inequal. Appl. 2021 (1), 1-17, 2021.
  • [60] Z.K. Silagadze, Citations and the Zipf-Mandelbrot law, Complex Syst. 11, 487-499, 1997.
  • [61] S.H. Saker, Some nonlinear dynamic inequalities on time scales and applications, J. Math. Inequal. 4 (4), 561-579, 2010.
  • [62] Y.G. Sun and T. Hassan, Some nonlinear dynamic integral inequalities on time scales, Appl. Math. Comput. 220 (4), 221-225, 2013.
  • [63] W. Sudsutad, S.K. Ntouyas and J. Tariboon, Quantum integral inequalities for convex functions, J. Math. Inequal. 9(3), 781-793, 2015.
  • [64] N. Siddique, M. Imran, K.A. Khan and J. Pečarić, Majorization inequalities via Green functions and Fink’s identity with applications to Shannon entropy, J. Inequal. Appl. 2020 (1), 1-14, 2020.
  • [65] J.T. Tou and R.C. Gonzales, Pattern recognition principle, Addison-Wesley, Reading MA, 1974.
  • [66] F. Topsoe, Some inequalities for information divergence and related measures of discrimination, Res. Rep. Coll., RGMIA. 2 (1), 85-98, 1999.
  • [67] C.C. Tisdell and A. Zaidi, Basic qualitative and quantitative results for solutions to nonlinear dynamic equations on time scales with an application to economic modelling, Nonlinear Anal. 68, 3504-3524, 2008.
  • [68] J. Tariboon and S.K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Differ. Equ. 2013, 1, 2013.
  • [69] J. Tariboon and S.K. Ntouyas, Quantum integral inequalities on finite intervals, J. Inequal. Appl. 2014, 1, 2014.
  • [70] A. Vukelic, G. Aras-Gazic and J. Pečarić, Generalization of Jensen’s and Jensen- Steffensen’s inequalities and their converses by Lidstone’s polynomial and majorization theorem, J. Numer. Anal. Approx. Theory. 46 (1), 6-24, 2016.
  • [71] M.J. Vivas-Cortex, A. Kashuri, R. Liko and J.E. Hernandez Hernandez, Quantum estimates of Ostrowski inequalities for generalized ϕ-convex functions, Symmetry. 11 (2), Article ID 1513, 2019.
  • [72] M.J. Vivas-Cortex, A. Kashuri, R. Liko and J.E. Hernandez Hernandez, Some inequalities using generalized convex functions in quantum analysis, Symmetry, 11 (11), Article ID 1402, 2019.
  • [73] M.J. Vivas-Cortex, A. Kashuri and J.E. Hernandez Hernandez, Trapezium-type inequalities for Raina’s fractional integrals operator using generalized convex functions, Symmetry. 12 (6), Article ID 1034, 2020.
  • [74] M.J. Vivas-Cortex, A. Kashuri, R. Liko and J.E. Hernandez Hernandez, Some new q-integral inequalities using generalized quantum Montgomery identity via preinvex functions, Symmetry. 12 (4), Article ID 533, 2020.
  • [75] D.V. Widder, Completely convex function and Lidstone series, Trans. Am. Math. Soc. 51, 387-398, 1942.
  • [76] E. Wedrowska, Application of Kullback-Leibler Relative Entropy for Studies on the Divergence of Household Expenditures Structures, Olszt. Econ. J. 6, 133-142, 2011.
  • [77] C. Zhu, W. Yang and Q. Zhao, Some new fractional q-integral Gr¨uss-type inequalities and other inequalities, J. Inequal. Appl. 2012 (1), 1-15, 2012.
Year 2022, Volume: 51 Issue: 3, 817 - 833, 01.06.2022
https://doi.org/10.15672/hujms.971154

Abstract

Project Number

Agreement number 02.a03.21.0008).

References

  • [1] R.P. Agarwal and P.J.Y. Wong, Error Inequalities in Polynomial Interpolation and Their Applications, Kluwer Academic Publishers, 1983.
  • [2] R. Agarwal, M. Bohner and A. Peterson, Inequalities on time scales: A survey, Math. Inequal. Appl. 7, 535-557, 2001.
  • [3] G. Aras Gazić, V. Culjak, J. Pečarić and A. Vukelić, Generalization of Jensen’s inequality by Lidstone’s polynomial and related results, Math. Inequal. Appl. 164, 1243-1267, 2013.
  • [4] R. Agarwal, D. O’Regan, and S. Saker, Dynamic inequalities on time scales, Springer, London, 2014.
  • [5] M. Adil Khan, N. Latif and J. Pečarić, Generalization of majorization theorem via Abel-Gontscharoff polynomial, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 19 (523), 91-116, 2015.
  • [6] R.P. Agarwal, S.I. Bradanovic and J., Pečarić, Generalizations of Sherman’s inequality by Lidstone’s interpolating polynomial, J. Inequal. Appl. 2016 (1), 1-18, 2016.
  • [7] M. Adil Khan, N. Latif and J. Pečarić, Generalizations of Majorization Inequality via Lidstone’s Polynomial and Their Applications, Commun. Math. Anal. 19 (2), 101-122, 2016.
  • [8] P. Agarwal, S.S. Dragomir, M. Jleli and B. Samet, Advances in Mathematical In- equalities and Applications, Springer Singapore, 2018.
  • [9] D. Andrica and T.M. Rassias, Differential and Integral Inequalities, Springer, 2019.
  • [10] M. Adeel, K.A. Khan, Ð. Pečarić and J. Pečarić, Generalization of the Levinson inequality with applications to information theory, J. Inequal. Appl. 2019, 230, 2019.
  • [11] M. Adeel, K.A. Khan, Ð. Pečarić and J. Pečarić, Estimation of f-divergence and Shannon entropy by Levinson type inequalities via new Green’s functions and Lidstone polynomial, Adv. Differ. Equ. 2020 (1), 1-15, 2020.
  • [12] M. Adeel, K.A. Khan, Ð. Pečarić and J. Pečarić, Estimation of f-divergence and Shannon entropy by Levinson type inequalities for higher order convex functions via Taylor polynomial, J. Math. Comput. Sci. 21 (4), 322-334, 2020.
  • [13] M.U. Awan, S. Talib, A. Kashuri, M.A. Noor and Y.M. Chu, Estimates of quantum bounds pertaining to new q-integral identity with applications, Adv. Differ. Equ. 2020 (1), 1-15, 2020.
  • [14] I. Ansari, K.A. Khan, A. Nosheen, Ð. Pečarić and J. Pečarić, Shannon type inequalities via time scales theory, Adv. Differ. Equ. 2020, 135, 2020.
  • [15] I. Ansari, K.A. Khan, A. Nosheen, Ð. Pečarić and J. Pečarić, Some inequalities for Csiszár divergence via theory of time scales, Adv. Differ. Equ. 2020, 698, 2020.
  • [16] I. Ansari, K.A. Khan, A. Nosheen, Ð. Pečarić and J. Pečarić, Estimation of divergence measures via weighted Jensen inequality on time scales, J. Inequal. Appl. 2021, 93, 2021.
  • [17] M.A. Ali, S.K. Ntouyas and J. Tariboon, Generalization of Quantum Ostrowski-Type Integral Inequalities, Mathematics. 9 (10), 11-55, 2021.
  • [18] D. Brigo and F. Mercurio, Discrete time vs continuous time stock-price dynamics and implications for option pricing Finance Stochast. 4, 147-159, 2000.
  • [19] M. Bohner and A. Peterson, Dynamic Equations on Time Scales, Birkh¨auser, Boston, 2001.
  • [20] M. Bohner, and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkh¨auser, Boston, 2003.
  • [21] K. Brahim, N. Bettaibi and M. Sellemi, On some Feng Qi type q-integral inequalities, J. Inequal. Pure Appl. Math. 9 (2), 1-7, 2008.
  • [22] R. Bibi, M. Bohner, J. Pečarić and S. Varosanec, Minkowski and Beckenbach-Dresher inequalities and functionals on time scales, J. Math. Inequal. 7 (3), 299-312, 2013.
  • [23] S.I. Butt and J. Pečarić, Generalization of Popoviciu Type Inequalities Via Abel- Gontscharoff Interpolating Polynomial, Orissa Math. Soc. 34 (1), 63-83, 2015.
  • [24] S.I. Butt, K.A. Khan and J. Pečarić, Generalization of Popoviciu inequality for higher order convex function via Taylor’s polynomial, Acta Univ. Apulensis. 42, 181-200, 2015.
  • [25] R. Bibi, A. Nosheen and J. Pečarić, Generalization of Jensen-type linear functional on time scales via lidstone polynomial, Cogent. Math. 4 (1), 1330670, 2017.
  • [26] S.I. Butt, N. Mehmood and J. Pečarić, New generalizations of Popoviciu type inequalities via new green functions and Fink’s identity, Trans. A. Razmadze Math. Inst. 171 (3), 293-303, 2017.
  • [27] R. Bibi, A. Nosheen and J. Pečarić, Extended Jensen’s type inequalities for diamond integrals via Taylors formula, Turkish J. Inequal. 3 (1), 7-18, 2019.
  • [28] S.I. Butt, N. Mehmood, Ð. Pečarić and J. Pečarić, New bounds for Shannon, relative and Mandelbrot entropies via Abel-Gontscharoff interpolating polynomial, Math. Inequal. Appl, 22 (4), 1283-1301, 2019.
  • [29] A. Ben Makhlouf, M. Kharrat, M.A. Hammami and D. Baleanu, Henry-Gronwall type q-fractional integral inequalities, Math. Method. Appl. Sci. 44 (2), 3-9, 2021.
  • [30] F. Chen and W. Yang, Some new Chebyshev type quantum integral inequalities on finite intervals J. Comput. Anal. Appl. 21, 17-26, 2016.
  • [31] S.S. Dragomir, Other Inequalities for Csiszár Divergence and Applications, Preprint, RGMIA Res. Rep. Coll, 2000.
  • [32] L. Egghe and R. Rousseau, Introduction to Informetrics. Quantitative Methods in Library, Documentation and Information Science, Elsevier, New York, 1990.
  • [33] S. Erden, S. Iftikhar, M.R. Delavar, P. Kumam, P. Thounthong and W. Kumam, On generalizations of some inequalities for convex functions via quantum integrals, Rev. R. Acad. Cienc. Exactas Fis. Nat., Ser. A Mat. 114 (3), Article ID 110, 2020.
  • [34] A. Fahad, J. Pečarić and M.I. Qureshi, Generalized Steffensen’s inequality by Lidstone interpolation and Montogomery’s identity, J. Inequal. Appl. 2018 (1), 1-21, 2018.
  • [35] A. Fahad and J. Pečarić, Generalized Steffensen-type inequalities by Abel-Gontscharoff polynomial J. Math. Anal. 10 (4), 11-25, 2019.
  • [36] S. Furuichi and H.R. Moradi, Advances in Mathematical Inequalities, De Gruyter, 2020.
  • [37] H. Gauchman, Integral inequalities in q-calculus, Comput. Math. Appl. 47 (2-3), 281-300, 2004.
  • [38] H. Jackson, On q-definite integrals, Quart. J. Pure and Appl. Math. 41, 193-203, 1910.
  • [39] S. Kullback, Information theory and statistics, Peter Smith, Gloucester, MA, 1978.
  • [40] V. Kac and P. Cheung, Quantum Calculus, Springer, 2002.
  • [41] K.A. Khan, T. Niaz, Ð. Pečarić and J. Pečarić, Refinement of Jensen’s inequality and estimation of f-and Rényi divergence via Montgomery identity, J. Inequal. Appl. 2018 (1), 1-22, 2018.
  • [42] M.A. Khan, N. Mohammad, E.R. Nwaeze and Y.M. Chu, Quantum Hermite- Hadamard inequality by means of a Green function, Adv. Differ. Equ. 2020 (1), 1-20, 2020.
  • [43] M. Kunt, A., Kashuri, T. Du and A.W. Baidar, Quantum Montgomery identity and quantum estimates of Ostrowski type inequalities, AIMS Math. 5 (6), 39-57, 2020.
  • [44] Z. Liu and W. Yang, Some new Gr¨uss type quantum integral inequalities on finite intervals, J. Nonlin. Sci. Appl. 9, 62-75, 2016.
  • [45] N. Latif, N. Siddique and J. Pečarić, Generalization of majorization theorem-II. J. Math. Inequal. 12 (3), 731-752, 2018.
  • [46] Y.X. Li, M.A. Ali, H. Budak, M. Abbas and Y.M. Chu, A new generalization of some quantum integral inequalities for quantum differentiable convex functions, Adv. Differ. Equ. 2021 (1), 1-15, 2021.
  • [47] B. Manaris, D. Vaughan, C. S. Wagner, J. Romero, and R. B. Davis, Evolutionary music and the Zipf-Mandelbrot law: developing fitness functions for pleasant music. In: Proceedings of 1st European Workshop on Evolutionary Music and Art (Evo- MUSART2003), Essex. pp. 522-534, 2003.
  • [48] Y. Miao and F. Qi, Several q-integral inequalities, J. Math. Inequal. 3 (1), 115-121, 2009.
  • [49] D. Mouillot and A. Lepretre, Introduction of relative abundance distribution (RAD) indices, estimated from the rank-frequency diagrams (RFD), to assess changes in community diversity. Environ. Monit. Assess. 63 (2), 279-295, 2000.
  • [50] N. Mehmood, S.I. Butt, Ð. Pečarić and J., Pečarić, Generalizations of cyclic refinements of Jensen’s inequality by Lidstone’s polynomial with applications in information theory, J. Math. Inequal. 14 (1), 249-271, 2020.
  • [51] M.A. Noor, M.U. Awan and K.I. Noor, Quantum Ostrowski inequalities for q- differentiable convex functions, J. Math. Inequal, 10 (4), 1013-1018, 2016.
  • [52] A. Nosheen, R. Bibi and J. Pečarić, Jensen-Steffensen inequality for diamond integrals, its converse and improvements via Green function and Taylor’s formula, Aequationes Math. 92 (2), 289-309, 2018.
  • [53] T. Niaz, K.A. Khan, Ð. Pečarić and J. Pečarić, Estimation of different entropies via Taylor one point and Taylor two points interpolations using Jensen type functionals, Int. J. Anal. Appl. 17 (5), 686-710, 2019.
  • [54] J. Pečarić, F. Proschan and Y.L. Tong, Convex Functions, Partial Orderings, and Statistical Applications. Mathematics in Science and Engineering, Academic Press, New York, 1992.
  • [55] J. Pečarić, M. Praljak and A. Witkowski, Linear operator inequality for n-convex functions at a point, Math. Inequal. Appl. 18, 1201-1217, 2015.
  • [56] J. Pečarić, A. Perušić and K. Smoljak, Generalizations of Steffensen’s Inequality by Abel-Gontscharoff Polynomial, Khayyam J. Math. 1 (1), 45-61, 2015.
  • [57] J. Pečarić and M. Praljak, Popoviciu type inequalities for higher order convex functions via lidstone interpolation, Math. Inequal. Appl. 22 (4), 1243-1256, 2019.
  • [58] J. Pečarić, A. Perušić Pribanić and A. Vukelić, Generalizations of Steffensen’s inequality by Lidstone’s polynomial and related results, Quaestiones Mathematicae, 43 (3), 293-307, 2020.
  • [59] S. Ramzan, A. Nosheen, R. Bibi and J. Pečarić, Generalized Jensen’s functional on time scales via extended Montgomery identity, J. Inequal. Appl. 2021 (1), 1-17, 2021.
  • [60] Z.K. Silagadze, Citations and the Zipf-Mandelbrot law, Complex Syst. 11, 487-499, 1997.
  • [61] S.H. Saker, Some nonlinear dynamic inequalities on time scales and applications, J. Math. Inequal. 4 (4), 561-579, 2010.
  • [62] Y.G. Sun and T. Hassan, Some nonlinear dynamic integral inequalities on time scales, Appl. Math. Comput. 220 (4), 221-225, 2013.
  • [63] W. Sudsutad, S.K. Ntouyas and J. Tariboon, Quantum integral inequalities for convex functions, J. Math. Inequal. 9(3), 781-793, 2015.
  • [64] N. Siddique, M. Imran, K.A. Khan and J. Pečarić, Majorization inequalities via Green functions and Fink’s identity with applications to Shannon entropy, J. Inequal. Appl. 2020 (1), 1-14, 2020.
  • [65] J.T. Tou and R.C. Gonzales, Pattern recognition principle, Addison-Wesley, Reading MA, 1974.
  • [66] F. Topsoe, Some inequalities for information divergence and related measures of discrimination, Res. Rep. Coll., RGMIA. 2 (1), 85-98, 1999.
  • [67] C.C. Tisdell and A. Zaidi, Basic qualitative and quantitative results for solutions to nonlinear dynamic equations on time scales with an application to economic modelling, Nonlinear Anal. 68, 3504-3524, 2008.
  • [68] J. Tariboon and S.K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Differ. Equ. 2013, 1, 2013.
  • [69] J. Tariboon and S.K. Ntouyas, Quantum integral inequalities on finite intervals, J. Inequal. Appl. 2014, 1, 2014.
  • [70] A. Vukelic, G. Aras-Gazic and J. Pečarić, Generalization of Jensen’s and Jensen- Steffensen’s inequalities and their converses by Lidstone’s polynomial and majorization theorem, J. Numer. Anal. Approx. Theory. 46 (1), 6-24, 2016.
  • [71] M.J. Vivas-Cortex, A. Kashuri, R. Liko and J.E. Hernandez Hernandez, Quantum estimates of Ostrowski inequalities for generalized ϕ-convex functions, Symmetry. 11 (2), Article ID 1513, 2019.
  • [72] M.J. Vivas-Cortex, A. Kashuri, R. Liko and J.E. Hernandez Hernandez, Some inequalities using generalized convex functions in quantum analysis, Symmetry, 11 (11), Article ID 1402, 2019.
  • [73] M.J. Vivas-Cortex, A. Kashuri and J.E. Hernandez Hernandez, Trapezium-type inequalities for Raina’s fractional integrals operator using generalized convex functions, Symmetry. 12 (6), Article ID 1034, 2020.
  • [74] M.J. Vivas-Cortex, A. Kashuri, R. Liko and J.E. Hernandez Hernandez, Some new q-integral inequalities using generalized quantum Montgomery identity via preinvex functions, Symmetry. 12 (4), Article ID 533, 2020.
  • [75] D.V. Widder, Completely convex function and Lidstone series, Trans. Am. Math. Soc. 51, 387-398, 1942.
  • [76] E. Wedrowska, Application of Kullback-Leibler Relative Entropy for Studies on the Divergence of Household Expenditures Structures, Olszt. Econ. J. 6, 133-142, 2011.
  • [77] C. Zhu, W. Yang and Q. Zhao, Some new fractional q-integral Gr¨uss-type inequalities and other inequalities, J. Inequal. Appl. 2012 (1), 1-15, 2012.
There are 77 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Iqrar Ansari 0000-0003-2760-7032

Khuram Ali Khan This is me 0000-0002-3468-2295

Ammara Nosheen 0000-0002-1627-4503

Dilda Pecaric 0000-0001-5606-9996

Josip Pecaric 0000-0002-5510-2085

Project Number Agreement number 02.a03.21.0008).
Publication Date June 1, 2022
Published in Issue Year 2022 Volume: 51 Issue: 3

Cite

APA Ansari, I., Khan, K. A., Nosheen, A., Pecaric, D., et al. (2022). Estimation of entropies on time scales by Lidstone’s interpolation using Csiszár-type functional. Hacettepe Journal of Mathematics and Statistics, 51(3), 817-833. https://doi.org/10.15672/hujms.971154
AMA Ansari I, Khan KA, Nosheen A, Pecaric D, Pecaric J. Estimation of entropies on time scales by Lidstone’s interpolation using Csiszár-type functional. Hacettepe Journal of Mathematics and Statistics. June 2022;51(3):817-833. doi:10.15672/hujms.971154
Chicago Ansari, Iqrar, Khuram Ali Khan, Ammara Nosheen, Dilda Pecaric, and Josip Pecaric. “Estimation of Entropies on Time Scales by Lidstone’s Interpolation Using Csiszár-Type Functional”. Hacettepe Journal of Mathematics and Statistics 51, no. 3 (June 2022): 817-33. https://doi.org/10.15672/hujms.971154.
EndNote Ansari I, Khan KA, Nosheen A, Pecaric D, Pecaric J (June 1, 2022) Estimation of entropies on time scales by Lidstone’s interpolation using Csiszár-type functional. Hacettepe Journal of Mathematics and Statistics 51 3 817–833.
IEEE I. Ansari, K. A. Khan, A. Nosheen, D. Pecaric, and J. Pecaric, “Estimation of entropies on time scales by Lidstone’s interpolation using Csiszár-type functional”, Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 3, pp. 817–833, 2022, doi: 10.15672/hujms.971154.
ISNAD Ansari, Iqrar et al. “Estimation of Entropies on Time Scales by Lidstone’s Interpolation Using Csiszár-Type Functional”. Hacettepe Journal of Mathematics and Statistics 51/3 (June 2022), 817-833. https://doi.org/10.15672/hujms.971154.
JAMA Ansari I, Khan KA, Nosheen A, Pecaric D, Pecaric J. Estimation of entropies on time scales by Lidstone’s interpolation using Csiszár-type functional. Hacettepe Journal of Mathematics and Statistics. 2022;51:817–833.
MLA Ansari, Iqrar et al. “Estimation of Entropies on Time Scales by Lidstone’s Interpolation Using Csiszár-Type Functional”. Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 3, 2022, pp. 817-33, doi:10.15672/hujms.971154.
Vancouver Ansari I, Khan KA, Nosheen A, Pecaric D, Pecaric J. Estimation of entropies on time scales by Lidstone’s interpolation using Csiszár-type functional. Hacettepe Journal of Mathematics and Statistics. 2022;51(3):817-33.