Research Article
BibTex RIS Cite

Universal central extensions of braided crossed modules of Lie algebras

Year 2022, Volume: 51 Issue: 4, 1013 - 1028, 01.08.2022
https://doi.org/10.15672/hujms.901199

Abstract

In this paper, we give a natural braiding on the universal central extension of a Lie crossed module with a given braiding in the category of Lie crossed modules. We also construct the universal central extension of a braided Lie crossed module in the category of braided Lie crossed modules, showing that, when one of these constructions exists, both of them exist and coincide.

Supporting Institution

Agencia Estatal de Investigación, Xunta de Galicia

Project Number

MTM2016-79661-P, ED431C 2019/10, ED481A-2017/064

References

  • [1] R. Brown and J.L. Loday, Van Kampen theorems for diagrams of spaces, Topology, 26 (3), 311–335, 1987.
  • [2] J.M. Casas and M. Ladra, Perfect crossed modules in Lie algebras, Comm. Algebra, 23 (5), 1625–1644, 1995.
  • [3] J.M. Casas and T. Van der Linden, Universal central extensions in semi-abelian categories, Appl. Categ. Struct. 22 (1), 253–268, 2014.
  • [4] D. Conduché, Modules croisés généralisés de longueur 2, J. Pure Appl. Algebra, 34 (2- 3), 155–178, 1984.
  • [5] G.J. Ellis, A nonabelian tensor product of Lie algebras, Glasgow Math. J. 33 (1), 101–120, 1991.
  • [6] A. Fernández-Fariña and M. Ladra, Braiding for categorical algebras and crossed modules of algebras I: Associative and Lie algebras, J. Algebra Appl. 19 (9), 2050176, 30 pp., 2020.
  • [7] A. Fernández-Fariña and M. Ladra, Braiding for categorical algebras and crossed modules of algebras II: Leibniz algebras, Filomat, 34 (5), 1443–1469, 2020.
  • [8] T. Fukushi, Perfect braided crossed modules and their $mod-q$ analogues, Hokkaido Math. J. 27 (1), 135–146, 1998.
  • [9] S.A. Huq, Commutator, nilpotency and solvability in categories, Quart. J. Math. Oxford, 2 (19), 363–389, 1968.
  • [10] G. Janelidze and G.M. Kelly, Galois theory and a general notion of central extension, J. Pure Appl. Algebra, 97 (2), 135–161, 1994.
  • [11] G. Janelidze, L. Márki and W. Tholen, Semi-abelian categories, J. Pure Appl. Algebra, 168 (2-3), 367–386, 2002.
  • [12] A. Joyal and R. Street, Braided monoidal categories, Macquarie Math. Reports No. 860081, 1986.
  • [13] K.J. Norrie, Crossed modules and analogues of group theorems, Ph.D. thesis, King’s College, University of London, 1987.
  • [14] E. Ulualan, Braiding for categorical and crossed Lie algebras and simplicial Lie algebras, Turkish J. Math. 31 (3), 239–255, 2007.
Year 2022, Volume: 51 Issue: 4, 1013 - 1028, 01.08.2022
https://doi.org/10.15672/hujms.901199

Abstract

Project Number

MTM2016-79661-P, ED431C 2019/10, ED481A-2017/064

References

  • [1] R. Brown and J.L. Loday, Van Kampen theorems for diagrams of spaces, Topology, 26 (3), 311–335, 1987.
  • [2] J.M. Casas and M. Ladra, Perfect crossed modules in Lie algebras, Comm. Algebra, 23 (5), 1625–1644, 1995.
  • [3] J.M. Casas and T. Van der Linden, Universal central extensions in semi-abelian categories, Appl. Categ. Struct. 22 (1), 253–268, 2014.
  • [4] D. Conduché, Modules croisés généralisés de longueur 2, J. Pure Appl. Algebra, 34 (2- 3), 155–178, 1984.
  • [5] G.J. Ellis, A nonabelian tensor product of Lie algebras, Glasgow Math. J. 33 (1), 101–120, 1991.
  • [6] A. Fernández-Fariña and M. Ladra, Braiding for categorical algebras and crossed modules of algebras I: Associative and Lie algebras, J. Algebra Appl. 19 (9), 2050176, 30 pp., 2020.
  • [7] A. Fernández-Fariña and M. Ladra, Braiding for categorical algebras and crossed modules of algebras II: Leibniz algebras, Filomat, 34 (5), 1443–1469, 2020.
  • [8] T. Fukushi, Perfect braided crossed modules and their $mod-q$ analogues, Hokkaido Math. J. 27 (1), 135–146, 1998.
  • [9] S.A. Huq, Commutator, nilpotency and solvability in categories, Quart. J. Math. Oxford, 2 (19), 363–389, 1968.
  • [10] G. Janelidze and G.M. Kelly, Galois theory and a general notion of central extension, J. Pure Appl. Algebra, 97 (2), 135–161, 1994.
  • [11] G. Janelidze, L. Márki and W. Tholen, Semi-abelian categories, J. Pure Appl. Algebra, 168 (2-3), 367–386, 2002.
  • [12] A. Joyal and R. Street, Braided monoidal categories, Macquarie Math. Reports No. 860081, 1986.
  • [13] K.J. Norrie, Crossed modules and analogues of group theorems, Ph.D. thesis, King’s College, University of London, 1987.
  • [14] E. Ulualan, Braiding for categorical and crossed Lie algebras and simplicial Lie algebras, Turkish J. Math. 31 (3), 239–255, 2007.
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Alejandro Fernández-fariña This is me 0000-0002-7853-5166

Manuel Ladra 0000-0002-0543-4508

Project Number MTM2016-79661-P, ED431C 2019/10, ED481A-2017/064
Publication Date August 1, 2022
Published in Issue Year 2022 Volume: 51 Issue: 4

Cite

APA Fernández-fariña, A., & Ladra, M. (2022). Universal central extensions of braided crossed modules of Lie algebras. Hacettepe Journal of Mathematics and Statistics, 51(4), 1013-1028. https://doi.org/10.15672/hujms.901199
AMA Fernández-fariña A, Ladra M. Universal central extensions of braided crossed modules of Lie algebras. Hacettepe Journal of Mathematics and Statistics. August 2022;51(4):1013-1028. doi:10.15672/hujms.901199
Chicago Fernández-fariña, Alejandro, and Manuel Ladra. “Universal Central Extensions of Braided Crossed Modules of Lie Algebras”. Hacettepe Journal of Mathematics and Statistics 51, no. 4 (August 2022): 1013-28. https://doi.org/10.15672/hujms.901199.
EndNote Fernández-fariña A, Ladra M (August 1, 2022) Universal central extensions of braided crossed modules of Lie algebras. Hacettepe Journal of Mathematics and Statistics 51 4 1013–1028.
IEEE A. Fernández-fariña and M. Ladra, “Universal central extensions of braided crossed modules of Lie algebras”, Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 4, pp. 1013–1028, 2022, doi: 10.15672/hujms.901199.
ISNAD Fernández-fariña, Alejandro - Ladra, Manuel. “Universal Central Extensions of Braided Crossed Modules of Lie Algebras”. Hacettepe Journal of Mathematics and Statistics 51/4 (August 2022), 1013-1028. https://doi.org/10.15672/hujms.901199.
JAMA Fernández-fariña A, Ladra M. Universal central extensions of braided crossed modules of Lie algebras. Hacettepe Journal of Mathematics and Statistics. 2022;51:1013–1028.
MLA Fernández-fariña, Alejandro and Manuel Ladra. “Universal Central Extensions of Braided Crossed Modules of Lie Algebras”. Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 4, 2022, pp. 1013-28, doi:10.15672/hujms.901199.
Vancouver Fernández-fariña A, Ladra M. Universal central extensions of braided crossed modules of Lie algebras. Hacettepe Journal of Mathematics and Statistics. 2022;51(4):1013-28.