Universal central extensions of braided crossed modules of Lie algebras
Year 2022,
Volume: 51 Issue: 4, 1013 - 1028, 01.08.2022
Alejandro Fernández-fariña
Manuel Ladra
Abstract
In this paper, we give a natural braiding on the universal central extension of a Lie crossed module with a given braiding in the category of Lie crossed modules. We also construct the universal central extension of a braided Lie crossed module in the category of braided Lie crossed modules, showing that, when one of these constructions exists, both of them exist and coincide.
Supporting Institution
Agencia Estatal de Investigación, Xunta de Galicia
Project Number
MTM2016-79661-P, ED431C 2019/10, ED481A-2017/064
References
- [1] R. Brown and J.L. Loday, Van Kampen theorems for diagrams of spaces, Topology,
26 (3), 311–335, 1987.
- [2] J.M. Casas and M. Ladra, Perfect crossed modules in Lie algebras, Comm. Algebra,
23 (5), 1625–1644, 1995.
- [3] J.M. Casas and T. Van der Linden, Universal central extensions in semi-abelian categories, Appl. Categ. Struct. 22 (1), 253–268, 2014.
- [4] D. Conduché, Modules croisés généralisés de longueur 2, J. Pure Appl. Algebra, 34 (2-
3), 155–178, 1984.
- [5] G.J. Ellis, A nonabelian tensor product of Lie algebras, Glasgow Math. J. 33 (1),
101–120, 1991.
- [6] A. Fernández-Fariña and M. Ladra, Braiding for categorical algebras and crossed
modules of algebras I: Associative and Lie algebras, J. Algebra Appl. 19 (9), 2050176,
30 pp., 2020.
- [7] A. Fernández-Fariña and M. Ladra, Braiding for categorical algebras and crossed
modules of algebras II: Leibniz algebras, Filomat, 34 (5), 1443–1469, 2020.
- [8] T. Fukushi, Perfect braided crossed modules and their $mod-q$ analogues, Hokkaido
Math. J. 27 (1), 135–146, 1998.
- [9] S.A. Huq, Commutator, nilpotency and solvability in categories, Quart. J. Math.
Oxford, 2 (19), 363–389, 1968.
- [10] G. Janelidze and G.M. Kelly, Galois theory and a general notion of central extension,
J. Pure Appl. Algebra, 97 (2), 135–161, 1994.
- [11] G. Janelidze, L. Márki and W. Tholen, Semi-abelian categories, J. Pure Appl. Algebra,
168 (2-3), 367–386, 2002.
- [12] A. Joyal and R. Street, Braided monoidal categories, Macquarie Math. Reports No.
860081, 1986.
- [13] K.J. Norrie, Crossed modules and analogues of group theorems, Ph.D. thesis, King’s
College, University of London, 1987.
- [14] E. Ulualan, Braiding for categorical and crossed Lie algebras and simplicial Lie algebras, Turkish J. Math. 31 (3), 239–255, 2007.
Year 2022,
Volume: 51 Issue: 4, 1013 - 1028, 01.08.2022
Alejandro Fernández-fariña
Manuel Ladra
Project Number
MTM2016-79661-P, ED431C 2019/10, ED481A-2017/064
References
- [1] R. Brown and J.L. Loday, Van Kampen theorems for diagrams of spaces, Topology,
26 (3), 311–335, 1987.
- [2] J.M. Casas and M. Ladra, Perfect crossed modules in Lie algebras, Comm. Algebra,
23 (5), 1625–1644, 1995.
- [3] J.M. Casas and T. Van der Linden, Universal central extensions in semi-abelian categories, Appl. Categ. Struct. 22 (1), 253–268, 2014.
- [4] D. Conduché, Modules croisés généralisés de longueur 2, J. Pure Appl. Algebra, 34 (2-
3), 155–178, 1984.
- [5] G.J. Ellis, A nonabelian tensor product of Lie algebras, Glasgow Math. J. 33 (1),
101–120, 1991.
- [6] A. Fernández-Fariña and M. Ladra, Braiding for categorical algebras and crossed
modules of algebras I: Associative and Lie algebras, J. Algebra Appl. 19 (9), 2050176,
30 pp., 2020.
- [7] A. Fernández-Fariña and M. Ladra, Braiding for categorical algebras and crossed
modules of algebras II: Leibniz algebras, Filomat, 34 (5), 1443–1469, 2020.
- [8] T. Fukushi, Perfect braided crossed modules and their $mod-q$ analogues, Hokkaido
Math. J. 27 (1), 135–146, 1998.
- [9] S.A. Huq, Commutator, nilpotency and solvability in categories, Quart. J. Math.
Oxford, 2 (19), 363–389, 1968.
- [10] G. Janelidze and G.M. Kelly, Galois theory and a general notion of central extension,
J. Pure Appl. Algebra, 97 (2), 135–161, 1994.
- [11] G. Janelidze, L. Márki and W. Tholen, Semi-abelian categories, J. Pure Appl. Algebra,
168 (2-3), 367–386, 2002.
- [12] A. Joyal and R. Street, Braided monoidal categories, Macquarie Math. Reports No.
860081, 1986.
- [13] K.J. Norrie, Crossed modules and analogues of group theorems, Ph.D. thesis, King’s
College, University of London, 1987.
- [14] E. Ulualan, Braiding for categorical and crossed Lie algebras and simplicial Lie algebras, Turkish J. Math. 31 (3), 239–255, 2007.